Instability of monoclonal myeloma protein may be identified as susceptibility to penetration and binding by newly synthesized Congo red derivatives.

Monoclonal myeloma proteins often have an abnormal, unstable structure, and tend to aggregate with fatal clinical consequences. A method for early clinical identification of this aggregation tendency is impatiently awaited. This work proposes the use of supramolecular dyes as specific ligands to reveal protein instability. Disclosure of excessive polypeptide chain flexibility in unstable monoclonal proteins, leading to increased susceptibility to penetration by foreign compounds, appeared possible when new supramolecular Congo red-derived dyes with different protein-binding capabilities were used for complexation. Two basic protein instability levels, local and global, were differentiated by comparing the extent of protein loading with dye and the subsequent electrophoretic migration rate of the complexes. A simple electrophoretic test is proposed for assessment of the instability of monoclonal proteins in clinical conditions.