Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.)

[1]  Junling Zhang,et al.  Role of iron plaque in Cd uptake by and translocation within rice (Oryza sativa L.) seedlings grown in solution culture , 2007 .

[2]  M. Yano,et al.  A silicon transporter in rice , 2006, Nature.

[3]  H. Nishizono,et al.  The role of the root cell wall in the heavy metal tolerance ofAthyrium yokoscense , 1987, Plant and Soil.

[4]  T. Iwashita,et al.  Identification of the silicon form in xylem sap of rice (Oryza sativa L.). , 2005, Plant & cell physiology.

[5]  H. Marschner,et al.  Effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L.) , 1978, Plant and Soil.

[6]  J. Wong,et al.  Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. , 2005, Chemosphere.

[7]  Fusuo Zhang,et al.  Effect of Si on the distribution of Cd in rice seedlings , 2005, Plant and Soil.

[8]  Yunxia Wang,et al.  Apoplastic Binding of Aluminum Is Involved in Silicon-Induced Amelioration of Aluminum Toxicity in Maize1 , 2004, Plant Physiology.

[9]  M. Yano,et al.  Characterization of the Silicon Uptake System and Molecular Mapping of the Silicon Transporter Gene in Rice1 , 2004, Plant Physiology.

[10]  Angela Hodge,et al.  The plastic plant: root responses to heterogeneous supplies of nutrients , 2004 .

[11]  馬 建鋒 Soil, Fertilizer, and Plant Silicon Research in Japan , 2003 .

[12]  S. Jansen,et al.  The relationship between aluminium and silicon accumulation in leaves of Faramea marginata (Rubiaceae). , 2002, The New phytologist.

[13]  D. Choi,et al.  Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. , 2002, Phytopathology.

[14]  V. Römheld,et al.  Role of leaf apoplast in silicon‐mediated manganese tolerance of Cucumis sativus L. , 2002 .

[15]  C. Mccrohan,et al.  Aluminum-dependent regulation of intracellular silicon in the aquatic invertebrate Lymnaea stagnalis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  E. Takahashi,et al.  Chapter 6 – Silicon uptake and accumulation in plants , 2002 .

[17]  E. Takahashi,et al.  Chapter 7 – Functions of silicon in plant growth , 2002 .

[18]  Domy C. Adriano,et al.  Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals , 2001 .

[19]  D. Neumann,et al.  Silicon and heavy metal tolerance of higher plants. , 2001, Phytochemistry.

[20]  George H. Snyder,et al.  Silicon in agriculture , 2001 .

[21]  Fusuo Zhang,et al.  Silicon induced cadmium tolerance of rice seedlings , 2000 .

[22]  H M Chen,et al.  Chemical methods and phytoremediation of soil contaminated with heavy metals. , 2000, Chemosphere.

[23]  S. McGrath,et al.  Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri , 2000 .

[24]  T. Flowers,et al.  Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow , 1999 .

[25]  R. Bélanger,et al.  Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. , 1998, Phytopathology.

[26]  W. Schwieger,et al.  Heavy metal tolerance of Minuartia verna , 1997 .

[27]  L. E. Hernández,et al.  Distribution of cadmium in shoot and root tissues1 , 1997 .

[28]  L. E. Hernández,et al.  Distribution of cadmium in shoot and root tissues of maize and pea plants : physiological disturbances , 1997 .

[29]  G. Wagner,et al.  Relationship between cadmium, glutathione and cadmium-binding peptides (phytochelatins) in leaves of intact tobacco seedlings , 1996 .

[30]  P. Meuwly,et al.  Retention of Cadmium in Roots of Maize Seedlings (Role of Complexation by Phytochelatins and Related Thiol Peptides) , 1995, Plant physiology.

[31]  D. Evans,et al.  Aluminium/silicon interactions in higher plants , 1995 .

[32]  J. Higgins,et al.  The effect of silica in grasses on the feeding behavior of the prairie vole, Microtus ochrogaster , 1992 .

[33]  R. Saxena,et al.  Iron, silica, and aluminum stresses and varietal resistance in rice : effects on whitebacked planthopper , 1992 .

[34]  P. Vorm Dry ashing of plant material and dissolution of the ash in HF for the colorimetric determination of silicon , 1987 .

[35]  S. Morita,et al.  Mechanism of manganese toxicity and tolerance of plants. VI: Effect of silicon on alleviation of manganese toxicity of barley , 1987 .

[36]  J. Duckett,et al.  An X-ray Microanalytical Study of the Distribution of Cadmium in Roots of Zea mays L. , 1984, Journal of plant physiology.

[37]  D. Parry,et al.  Ultrastructure of Silica Deposits in Higher Plants , 1981 .

[38]  B. Volcani,et al.  Silicon and Siliceous Structures in Biological Systems , 1981, Springer New York.

[39]  A. G. Sangster SILICON IN THE ROOTS OF HIGHER PLANTS , 1978 .

[40]  S. Iwao Cadmium, lead, copper and zinc in food, feces and organs of humans. Interrelationships in food and feces and interactions in the liver and the renal cortex. , 1977, The Keio journal of medicine.

[41]  S. R. Koirtyohann,et al.  Zinc, copper, cadmium and chromium in polished and unpolished rice. , 1977, The Science of the total environment.

[42]  D. Parry,et al.  The Ultrastructure and Electron-probe Microassay of Silicon Deposits in the Endodermis of the Seminal Roots of Sorghum bicolor (L.) Moench , 1976 .

[43]  J. Cock,et al.  Laboratory manual for physiological studies of rice , 1971 .