Global optimization algorithmsfor bound constrained problems

[1]  Anne Auger,et al.  Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009 , 2010, GECCO '10.

[2]  Raymond Ros,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup , 2009 .

[3]  Dietmar Ratz,et al.  Automatische Ergebnisverifikation bei globalen Optimierungsproblemen , 1992 .

[4]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[5]  J. L. Maryak,et al.  Bayesian Heuristic Approach to Discrete and Global Optimization , 1999, Technometrics.

[6]  J. Hiriart-Urruty,et al.  Comparison of public-domain software for black box global optimization , 2000 .

[7]  G. T. Timmer,et al.  Stochastic global optimization methods part II: Multi level methods , 1987, Math. Program..

[8]  Robert Schaefer,et al.  Foundations of Global Genetic Optimization , 2007, Studies in Computational Intelligence.

[9]  José Fernández,et al.  Empirical convergence speed of inclusion functions for facility location problems , 2007 .

[10]  E. Hansen Global optimization using interval analysis: The one-dimensional case , 1979 .

[11]  Robert L. Smith,et al.  Pure adaptive search in monte carlo optimization , 1989, Math. Program..

[12]  I H Osman,et al.  Meta-Heuristics Theory and Applications , 2011 .

[13]  Tibor Csendes,et al.  A New Multisection Technique in Interval Methods for Global Optimization , 2000, Computing.

[14]  T. Csendes,et al.  Application of a stochastic method to the solution of the phase stability problem: cubic equations of state , 2003 .

[15]  M. Powell The NEWUOA software for unconstrained optimization without derivatives , 2006 .

[16]  Yunhao Liu,et al.  Quality of Trilateration: Confidence-Based Iterative Localization , 2008, IEEE Transactions on Parallel and Distributed Systems.

[17]  Julio R. Banga,et al.  Solving nonconvex climate control problems: pitfalls and algorithm performances , 2004, Appl. Soft Comput..

[18]  Arnold Neumaier,et al.  Global Optimization by Multilevel Coordinate Search , 1999, J. Glob. Optim..

[19]  Tibor Csendes,et al.  Towards a computer-assisted proof for chaos in a forced damped pendulum equation , 2007 .

[20]  Robert L. Smith,et al.  Hit-and-Run Algorithms for Generating Multivariate Distributions , 1993, Math. Oper. Res..

[21]  S. Skelboe Computation of rational interval functions , 1974 .

[22]  Inmaculada García,et al.  New Load Balancing Criterion For Parallel Interval Global Optimization Algorithms , 1998 .

[23]  Martin Berz,et al.  Computation and Application of Taylor Polynomials with Interval Remainder Bounds , 1998, Reliab. Comput..

[24]  Tibor Csendes,et al.  New Subinterval Selection Criteria for Interval Global Optimization , 2001, J. Glob. Optim..

[25]  E. Hansen,et al.  Bounding solutions of systems of equations using interval analysis , 1981 .

[26]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[27]  Ryszard Zieliński,et al.  A sequential Bayesian approach to estimating the dimension of a multinomial distribution , 1985 .

[28]  Roger J.-B. Wets,et al.  Minimization by Random Search Techniques , 1981, Math. Oper. Res..

[29]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[30]  Designing Optimal Benefit Rules for Flexible Retirement , 2003 .

[31]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[32]  Julio R. Banga,et al.  Global Optimization of Bioprocesses using Stochastic and Hybrid Methods , 2004 .

[33]  Alexander H. G. Rinnooy Kan,et al.  A stochastic method for global optimization , 1982, Math. Program..

[34]  Martin Pincus,et al.  Letter to the Editor - -A Closed Form Solution of Certain Programming Problems , 1968, Oper. Res..

[35]  Tibor Csendes,et al.  Multisection in Interval Branch-and-Bound Methods for Global Optimization – I. Theoretical Results , 2000, J. Glob. Optim..

[36]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[37]  J´nos Pintér,et al.  Convergence properties of stochastic optimization procedures , 1984 .

[38]  TIBOR CSENDES,et al.  Numerical Experiences with a New Generalized Subinterval Selection Criterion for Interval Global Optimization , 2003, Reliab. Comput..

[39]  Alexander H. G. Rinnooy Kan,et al.  On when to stop sampling for the maximum , 1991, J. Glob. Optim..

[40]  Anne Auger,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .

[41]  Ewa Niewiadomska-Szynkiewicz,et al.  Optimization Schemes For Wireless Sensor Network Localization , 2009, Int. J. Appl. Math. Comput. Sci..

[42]  Thomas Stützle,et al.  Evaluating Las Vegas Algorithms: Pitfalls and Remedies , 1998, UAI.

[43]  Tibor Csendes,et al.  INTLAB implementation of an interval global optimization algorithm , 2009, Optim. Methods Softw..

[44]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[45]  Tibor Csendes,et al.  A New Verified Optimization Technique for the "Packing Circles in a Unit Square" Problems , 2005, SIAM J. Optim..

[46]  Samuel H. Brooks A Discussion of Random Methods for Seeking Maxima , 1958 .

[47]  G. T. Timmer,et al.  Stochastic global optimization methods part I: Clustering methods , 1987, Math. Program..

[48]  J D Pinter,et al.  Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .

[49]  Tibor Csendes,et al.  Black Box Optimization Benchmarking of the GLOBAL Method , 2012, Evolutionary Computation.

[50]  B. R. Badrinath,et al.  Ad hoc positioning system (APS) , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[51]  Tibor Csendes,et al.  Some Global Optimization Problems on Stiefel Manifolds , 2004, J. Glob. Optim..

[52]  Ken A. Dill,et al.  Molecular Structure Prediction by Global Optimization , 1997 .

[53]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[54]  A. Neumaier Interval methods for systems of equations , 1990 .

[55]  Arnold Neumaier,et al.  Taylor Forms—Use and Limits , 2003, Reliab. Comput..

[56]  Branka Vucetic,et al.  Simulated Annealing based Wireless Sensor Network Localization , 2006, J. Comput..

[57]  Zelda B. Zabinsky,et al.  Stochastic Adaptive Search for Global Optimization , 2003 .

[58]  Panos M. Pardalos,et al.  Global optimization by continuous grasp , 2007, Optim. Lett..

[59]  Tibor Csendes,et al.  A Heuristic Rejection Criterion in Internal Global Optimization Algorithms , 2001 .

[60]  Fabio Schoen,et al.  Sequential stopping rules for the multistart algorithm in global optimisation , 1987, Math. Program..

[61]  Fabio Schoen,et al.  Optimal and sub-optimal stopping rules for the Multistart algorithm in global optimization , 1992, Math. Program..

[62]  Tibor Csendes,et al.  Optimization and the Miranda Approach in Detecting Horseshoe-Type Chaos by Computer , 2007, Int. J. Bifurc. Chaos.

[63]  E. Hansen Global optimization using interval analysis — the multi-dimensional case , 1980 .

[64]  Tibor Csendes,et al.  Improvements on the GLOBAL optimization algorithm with numerical tests , 2007 .

[65]  Tibor Csendes,et al.  Nonlinear Parameter Estimation by Global Optimization - Efficiency and reliability , 1989, Acta Cybern..

[66]  A. Griewank,et al.  Automatic differentiation of algorithms : theory, implementation, and application , 1994 .

[67]  Tibor Csendes,et al.  Extensions of a multistart clustering algorithm for constrained global optimization problems , 2009 .

[68]  Tibor Csendes,et al.  New Approaches to Circle Packing in a Square - With Program Codes , 2007, Optimization and its applications.

[69]  Jon G. Rokne,et al.  New computer methods for global optimization , 1988 .

[70]  Robert L. Smith,et al.  Shake-and-Bake Algorithms for Generating Uniform Points on the Boundary of Bounded Polyhedra , 1991, Oper. Res..

[72]  Donald R. Jones,et al.  Direct Global Optimization Algorithm , 2009, Encyclopedia of Optimization.

[73]  M. J. D. Powell,et al.  How bad are the BFGS and DFP methods when the objective function is quadratic? , 1986, Math. Program..

[74]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm , 1970 .

[75]  Philip E. Gill,et al.  Practical optimization , 1981 .

[76]  Tibor Csendes,et al.  Noname manuscript No. (will be inserted by the editor) The GLOBAL Optimization Method Revisited , 2022 .

[77]  M.Cs. Markót,et al.  New interval methods for constrained global optimization , 2006, Math. Program..

[78]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[79]  Brian D. O. Anderson,et al.  Wireless sensor network localization techniques , 2007, Comput. Networks.

[80]  Luc Devroye,et al.  Progressive global random search of continuous functions , 1978, Math. Program..

[81]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[82]  Robert L. Smith,et al.  Hit-and-run algorithms for the identification of nonredundant linear inequalities , 1987, Math. Program..

[83]  Carmen G. Moles,et al.  Integrated process design and control via global optimization: A wastewater treatment plant case study , 2001, 2001 European Control Conference (ECC).

[84]  Yinyu Ye,et al.  Semidefinite programming for ad hoc wireless sensor network localization , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[85]  L. C. W. Dixon,et al.  Global Optima without Convexity , 1978 .

[86]  Wei Zhang,et al.  Genetic Algorithm Based Wireless Sensor Network Localization , 2008, 2008 Fourth International Conference on Natural Computation.

[87]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[88]  Alexander H. G. Rinnooy Kan,et al.  Bayesian stopping rules for multistart global optimization methods , 1987, Math. Program..

[89]  Robert L. Smith,et al.  Pure adaptive search in global optimization , 1992, Math. Program..

[90]  N. Baba Convergence of a random optimization method for constrained optimization problems , 1981 .

[91]  Tibor Csendes,et al.  Ecient Estimation of Loads in Service Networks , 2010 .

[92]  L. G. Casado,et al.  Heuristic Rejection in Interval Global Optimization , 2003 .

[93]  M. Degroot Optimal Statistical Decisions , 1970 .

[94]  Ying Zhang,et al.  Localization from connectivity in sensor networks , 2004, IEEE Transactions on Parallel and Distributed Systems.

[95]  Jan M. Rabaey,et al.  Robust Positioning Algorithms for Distributed Ad-Hoc Wireless Sensor Networks , 2002, USENIX Annual Technical Conference, General Track.

[96]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.