Mantle Exhumation in an Early Paleozoic Passive Margin, Northern Cordillera, Yukon

Orogenic peridotite occurs as a megaboudin structurally juxtaposed with smaller boudined masses of corona troctolite, skarn, and garnet amphibolite in metasedimentary rocks of the Yukon‐Tanana Terrane, Yukon. The peridotite shows well‐developed plagioclase coronae on spinel and records cooling from ∼1000° to 600°C and decompression across the spinel‐plagioclase peridotite facies boundary at ∼0.7 GPa. The troctolite boudins record cooling to 850°C through the same facies reaction at ∼0.8 GPa. In an aureole surrounding the peridotite body, the mainly quartzofeldspathic country rock contains leucosome with garnet, orthopyroxene, and sillimanite formed from breakdown of biotite, which records temperatures of ∼900°C at pressures of at least 0.7 GPa. Exhumation of the peridotite body from the mantle during rifting of continental lithosphere at least 25 km thick subjected continental margin metasediments to conditions above the fluid‐absent metapelite solidus. The contrasting strength of upper mantle and crustal lithologies during extension may explain the structural juxtaposition and boudinage of upper mantle peridotite and troctolite on various scales. The Os isotopic compositions of the peridotite body show that it represents either relatively young mantle lithosphere with an age only slightly older than the Devonian metasedimentary rocks in which it is hosted or mantle that is metasomatized in the same events related to rifting. The rocks in the study area bear striking similarities to those in and surrounding the Zabargad (Red Sea) and Ronda (Spain) peridotite massifs and are interpreted to have formed in an Early Paleozoic preoceanic rift. Other enigmatic mantle tectonite occurrences in continental margin metasediments in Yukon and Alaska may have a similar origin.

[1]  R. Whitmarsh,et al.  THE OCEAN / CONTINENT TRANSITION BENEATH THE IBERIA ABYSSAL PLAIN AND CONTINENTAL-RIFTING TO SEAFLOOR-SPREADING PROCESSES , 2004 .

[2]  R. Creaser,et al.  Further evaluation of the Re-Os geochronometer in organic-rich sedimentary rocks: A test of hydrocarbon maturation effects in the Exshaw Formation, Western Canada Sedimentary Basin , 2002 .

[3]  G. Schmidt,et al.  Os isotopes in mantle xenoliths from the Eifel volcanic field and the Vogelsberg (Germany): age constraints on the lithospheric mantle , 2002 .

[4]  J. Blusztajn,et al.  Abyssal peridotite osmium isotopic compositions from cr‐spinel , 2002 .

[5]  S. Johnston The Great Alaskan Terrane Wreck: reconciliation of paleomagnetic and geological data in the northern Cordillera , 2001 .

[6]  M. Schmidt,et al.  Melting relations in hydrous systems revisited: application to metapelites, metagreywackes and metabasalts , 2001 .

[7]  R. Walker,et al.  Osmium isotopic compositions of mantle xenoliths: A global perspective , 2001 .

[8]  S. Hart,et al.  Re–Os Isotopes in the Horoman Peridotite: Evidence for Refertilization? , 2001 .

[9]  R. Creaser,et al.  Re-Os Geochronology and Systematics in Molybdenite from the Endako Porphyry Molybdenum Deposit, British Columbia, Canada , 2001 .

[10]  Marc M. Hirschmann,et al.  Mantle solidus: Experimental constraints and the effects of peridotite composition , 2000 .

[11]  L. Reisberg,et al.  Re–Os constraints on harzburgite and lherzolite formation in the lithospheric mantle: a study of northern Canadian Cordillera xenoliths , 2000 .

[12]  L. Reisberg,et al.  Os isotopic systematics in mantle xenoliths; age constraints on the Canadian Cordillera lithosphere , 2000 .

[13]  G. Schmidt,et al.  Os isotopes and highly siderophile elements (HSE) in the Ligurian ophiolites, Italy , 2000 .

[14]  R. Creaser,et al.  Major and trace element compositions and Sr-Nd-Pb systematics of crystalline rocks from the Dawson Range, Yukon, Canada , 1999 .

[15]  S. Johnston Large-scale coast-parallel displacements in the Cordillera: a granitic resolution to a paleomagnetic dilemma , 1999 .

[16]  G. Gruau,et al.  The origin of U-shaped rare earth patterns in ophiolite peridotites: assessing the role of secondary alteration and melt/rock reaction , 1998 .

[17]  N. Rogers,et al.  The petrogenesis of the eastern Pyrenean peridotites: an integrated study of their whole-rock geochemistry and Re-Os isotope composition , 1998 .

[18]  R. Walker,et al.  THE Re-Os ISOTOPE SYSTEM IN COSMOCHEMISTRY AND HIGH-TEMPERATURE GEOCHEMISTRY , 1998 .

[19]  W. Taylor An experimental test of some geothermometr and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnte websterite , 1998 .

[20]  T. Meisel,et al.  ReOs isotopes in orogenic peridotite massifs in the Eastern Alps, Austria , 1997 .

[21]  J. Brun,et al.  Mantle exhumation at passive margins , 1996 .

[22]  V. Gardien,et al.  Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting , 1995 .

[23]  A. Mayer,et al.  Emplacement of mantle peridotite in the lower continental crust, Ivrea-Verbano zone, northwest Italy , 1995 .

[24]  L. Reisberg,et al.  Longevity of sub-continental mantle lithosphere from osmium isotope systematics in orogenic peridotite massifs , 1995, Nature.

[25]  P. H. Nixon,et al.  Tectonic implications of graphitized diamonds from the Ronda, peridotite massif, southern Spain , 1993 .

[26]  J. Mortensen Pre‐Mid‐Mesozoic tectonic evolution of the Yukon‐Tanana Terrane, Yukon and Alaska , 1992 .

[27]  Robert G. Berman,et al.  THERMOBAROMETRY USING MULTI-EOUILIBRIUM CALCULATIONS: A NEW TECHNIOUE, WITH PETROLOGICAL APPLICATIONS- , 1991 .

[28]  C. Mével,et al.  Zabargad peridotite: Evidence for multistage metasomatism during Red Sea rifting , 1991 .

[29]  T. Walczyk,et al.  Osmium isotope ratio determinations by negative thermal ionization mass spectrometry , 1991 .

[30]  G. Witt-Eickschen,et al.  Solubility of Ca and Al in orthopyroxene from spinel peridotite: an improved version of an empirical geothermometer , 1991 .

[31]  F. Boudier,et al.  High-Temperature Hydrothermal Alteration of Peridotite, Zabargad Island (Red Sea) , 1991 .

[32]  R. Berry,et al.  High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle , 1991 .

[33]  G. Wasserburg,et al.  Negative thermal ion mass spectrometry of osmium, rhenium, and iridium , 1991 .

[34]  T. Köhler,et al.  Geothermobarometry in Four-phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers , 1990 .

[35]  N. White,et al.  Generating melt during lithospheric extension: Pure shear vs. simple shear , 1990 .

[36]  John P. Platt,et al.  Extensional collapse of thickened continental lithosphere: A working hypothesis for the Alboran Sea and Gibraltar arc , 1989 .

[37]  R. Oyarzun,et al.  “Mantle core complexes” and Neogene extensional detachment tectonics in the western Betic Cordilleras, Spain: an alternative model for the emplacement of the Ronda peridotite , 1989 .

[38]  P. Michael,et al.  Mantle peridotites from continental rifts to ocean basins to subduction zones , 1989 .

[39]  W. McDonough,et al.  Rare earth elements in upper mantle rocks , 1989 .

[40]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[41]  E. Bonatti,et al.  Zabargad and the isotopic evolution of the sub-Red Sea mantle and crust , 1988 .

[42]  E. Bonatti,et al.  Crustal underplating and evolution in the Red Sea Rift: Uplifted gabbro/gneiss crustal complexes on Zabargad and Brothers Islands , 1987 .

[43]  E. Bonatti,et al.  Peridotites from the Island of Zabargad (St. John), Red Sea: Petrology and geochemistry , 1986 .

[44]  T. Keith,et al.  Early Mesozoic tectonic history of the boundary area, east‐central Alaska , 1985 .

[45]  P. Roeder,et al.  The Effect of Postcumulus Reactions on Composition of Chrome-spinels from the Jimberlana Intrusion , 1985 .

[46]  B. Wernicke,et al.  Uniform-sense normal simple shear of the continental lithosphere , 1985 .

[47]  K. Ozawa Evaluation of olivine-spinel geothermometry as an indicator of thermal history for peridotites , 1983 .

[48]  G. J. Woodsworth,et al.  Tectonic assemblage map of the Canadian Cordillera and adjacent parts of the United States of America , 1981 .

[49]  T. Keith,et al.  Geology of an alpine-type peridotite in the Mount Sorenson area, east-central Alaska , 1981 .

[50]  J. Sinton,et al.  Compositional Layering in Alpine Peridotites: Evidence for Pressure Solution Creep in the Mantle , 1979, The Journal of Geology.

[51]  H. W. Tipper Tectonic assemblage map of the canadian Cordillera , 1978 .

[52]  P. Wells Pyroxene thermometry in simple and complex systems , 1977 .

[53]  B. W. Evans,et al.  Chrome-spinel in progressive metamorphism—a preliminary analysis , 1975 .

[54]  T. Keith,et al.  Ultramafic rocks of the Eagle quadrangle, east-central Alaska , 1974 .

[55]  D. Tempelman-Kluit Reconnaissance geology of Aishihik lake, Snag and Part of Stewart River map-areas, west-central Yukon , 1973 .

[56]  T. Loomis Diapiric Emplacement of the Ronda High-Temperature Ultramafic Intrusion, Southern Spain , 1972 .

[57]  T. Loomis Contact Metamorphism of Pelitic Rock by the Ronda Ultramafic Intrusion, Southern Spain , 1972 .

[58]  D. Green,et al.  The instability of plagioclase in peridotite at high pressure , 1970 .

[59]  E. Tex Origin of ultramafic rocks, their tectonic setting and history: A contribution to the discussion of the paper “the origin of ultramafic and ultrabasic rocks” by P.J. Wyllie , 1969 .

[60]  B. Mason Composition of the Earth , 1966, Nature.