Activation of CB2 receptors as a potential therapeutic target for migraine: evaluation in an animal model

[1]  J. Olesen,et al.  Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation , 2014, Cephalalgia : an international journal of headache.

[2]  R. Burstein,et al.  Migraine pathophysiology: Anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain , 2013, PAIN®.

[3]  P. Goadsby,et al.  Endocannabinoids in the Brainstem Modulate Dural Trigeminovascular Nociceptive Traffic via CB1 and “Triptan” Receptors: Implications in Migraine , 2013, The Journal of Neuroscience.

[4]  C. Ghelardini,et al.  St. John's wort reversal of meningeal nociception: a natural therapeutic perspective for migraine pain. , 2013, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[5]  K. Varani,et al.  Antinociceptive effects of the selective CB2 agonist MT178 in inflammatory and chronic rodent pain models , 2013, PAIN®.

[6]  L. Guzzo,et al.  CB1 and CB2 Cannabinoid Receptor Agonists Induce Peripheral Antinociception by Activation of the Endogenous Noradrenergic System , 2013, Anesthesia and analgesia.

[7]  M. Molinari,et al.  Distinct regulation of nNOS and iNOS by CB2 receptor in remote delayed neurodegeneration , 2012, Journal of Molecular Medicine.

[8]  F. Pierelli,et al.  Oral nitric-oxide donor glyceryl-trinitrate induces sensitization in spinal cord pain processing in migraineurs: a double-blind, placebo-controlled, cross-over study. , 2011, European journal of pain.

[9]  G. Nappi,et al.  Effects of anandamide in migraine: data from an animal model , 2011, The Journal of Headache and Pain.

[10]  P. Chandran,et al.  Central and peripheral sites of action for CB2 receptor mediated analgesic activity in chronic inflammatory and neuropathic pain models in rats , 2011, British journal of pharmacology.

[11]  C. Tassorelli,et al.  The endocannabinoid system and migraine , 2010, Experimental Neurology.

[12]  K. Mackie,et al.  CB2: a cannabinoid receptor with an identity crisis , 2010, British journal of pharmacology.

[13]  G. Nappi,et al.  Alterations of the endocannabinoid system in an animal model of migraine: Evaluation in cerebral areas of rat , 2010, Cephalalgia : an international journal of headache.

[14]  H. Pan,et al.  Cannabinoid-2 receptor limits inflammation, oxidative/nitrosative stress, and cell death in nephropathy. , 2010, Free radical biology & medicine.

[15]  S. Khuder,et al.  Allodynia in Migraine: Association With Comorbid Pain Conditions , 2009, Headache.

[16]  G. Bernardi,et al.  Selective CB2 Receptor Agonism Protects Central Neurons from Remote Axotomy-Induced Apoptosis through the PI3K/Akt Pathway , 2009, The Journal of Neuroscience.

[17]  P. Anand,et al.  Targeting CB2 receptors and the endocannabinoid system for the treatment of pain , 2009, Brain Research Reviews.

[18]  A. Hohmann,et al.  Selective Activation of Cannabinoid CB2 Receptors Suppresses Neuropathic Nociception Induced by Treatment with the Chemotherapeutic Agent Paclitaxel in Rats , 2008, Journal of Pharmacology and Experimental Therapeutics.

[19]  István Katona,et al.  Endocannabinoid signaling as a synaptic circuit breaker in neurological disease , 2008, Nature Medicine.

[20]  A. Piscopo,et al.  New insights of dimethyl sulphoxide effects (DMSO) on experimental in vivo models of nociception and inflammation. , 2008, Pharmacological research.

[21]  J. Deleo,et al.  Spinal Microglial and Perivascular Cell Cannabinoid Receptor Type 2 Activation Reduces Behavioral Hypersensitivity without Tolerance after Peripheral Nerve Injury , 2008, Anesthesiology.

[22]  P. di Bella,et al.  Role of Calcitonin Gene-Related Peptide and Substance P in Different Models of Pain , 2008, Cephalalgia : an international journal of headache.

[23]  P. Chandran,et al.  In vitro and in vivo characterization of A‐796260: a selective cannabinoid CB2 receptor agonist exhibiting analgesic activity in rodent pain models , 2008, British journal of pharmacology.

[24]  K. Javanmardi,et al.  CB1 RECEPTOR ACTIVATION IN THE BASOLATERAL AMYGDALA PRODUCES ANTINOCICEPTION IN ANIMAL MODELS OF ACUTE AND TONIC NOCICEPTION , 2007, Clinical and experimental pharmacology & physiology.

[25]  P. Goadsby,et al.  Animal models of migraine: looking at the component parts of a complex disorder , 2006, The European journal of neuroscience.

[26]  R. Bertorelli,et al.  CB2 receptor‐mediated antihyperalgesia: possible direct involvement of neural mechanisms , 2006, The European journal of neuroscience.

[27]  P. McIntyre,et al.  Peripheral nerve injury induces cannabinoid receptor 2 protein expression in rat sensory neurons , 2005, Neuroscience.

[28]  F. Leblond,et al.  Behavioral, pharmacological and molecular characterization of the saphenous nerve partial ligation: A new model of neuropathic pain , 2005, Neuroscience.

[29]  J. Olesen Reliability of the Nitroglycerin Provocative Test in the Diagnosis of Neurovascular Headaches , 2005, Cephalalgia : an international journal of headache.

[30]  R. Hampson,et al.  Cannabinoid physiology and pharmacology: 30 years of progress , 2004, Neuropharmacology.

[31]  A. Hohmann,et al.  Activation of cannabinoid CB2 receptors suppresses C-fiber responses and windup in spinal wide dynamic range neurons in the absence and presence of inflammation. , 2004, Journal of neurophysiology.

[32]  M. Guido,et al.  Nitroglycerin induces migraine headache and central sensitization phenomena in patients with migraine without aura: a study of laser evoked potentials , 2004, Neuroscience Letters.

[33]  Darrell R. Abernethy,et al.  International Union of Pharmacology: Approaches to the Nomenclature of Voltage-Gated Ion Channels , 2003, Pharmacological Reviews.

[34]  T. Vanderah,et al.  Inhibition of Inflammatory Hyperalgesia by Activation of Peripheral CB2 Cannabinoid Receptors , 2003, Anesthesiology.

[35]  A. Hohmann,et al.  Selective activation of cannabinoid CB2 receptors suppresses spinal fos protein expression and pain behavior in a rat model of inflammation , 2003, Neuroscience.

[36]  Yun-qing Li,et al.  Fos expression in tyrosine hydroxylase-containing neurons in rat brainstem after visceral noxious stimulation: an immunohistochemical study. , 2003, World journal of gastroenterology.

[37]  G. Nappi,et al.  Nitroglycerin induces hyperalgesia in rats--a time-course study. , 2003, European journal of pharmacology.

[38]  M. Herkenham,et al.  International Union of Pharmacology. XXVII. Classification of Cannabinoid Receptors , 2002, Pharmacological Reviews.

[39]  M. Moskowitz,et al.  Delayed inflammation in rat meninges: implications for migraine pathophysiology. , 2001, Brain : a journal of neurology.

[40]  T. Vanderah,et al.  CB2 cannabinoid receptor-mediated peripheral antinociception , 2001, Pain.

[41]  R. Yezierski,et al.  The role of neuroinflammation and neuroimmune activation in persistent pain , 2001, Pain.

[42]  J. Odeberg The debut of The Journal of Headache and Pain , 2000, The Journal of Headache and Pain.

[43]  A. Basbaum,et al.  Spinal cannabinoids are anti-allodynic in rats with persistent inflammation , 1999, Pain.

[44]  M. Herkenham,et al.  Cannabinoid receptors undergo axonal flow in sensory nerves , 1999, Neuroscience.

[45]  G. Nappi,et al.  The effects on the central nervous system of nitroglycerin—putative mechanisms and mediators , 1999, Progress in Neurobiology.

[46]  D. Piomelli,et al.  Control of pain initiation by endogenous cannabinoids , 1998, Nature.

[47]  J. D. Richardson,et al.  Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors , 1998, Pain.

[48]  M. Alessandri,et al.  Responsiveness of the trigeminovascular system to nitroglycerine in cluster headache patients. , 1997, Brain : a journal of neurology.

[49]  L. Petrelli,et al.  N-(2-hydroxyethyl)hexadecanamide is orally active in reducing edema formation and inflammatory hyperalgesia by down-modulating mast cell activation. , 1996, European journal of pharmacology.

[50]  C. Tassorelli,et al.  Systemic nitroglycerin induces Fos immunoreactivity in brainstem and forebrain structures of the rat , 1995, Brain Research.

[51]  S. L. Patrick,et al.  An examination of the central sites of action of cannabinoid-induced antinociception in the rat. , 1995, Life sciences.

[52]  A. Buriani,et al.  Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[53]  S. Munro,et al.  Molecular characterization of a peripheral receptor for cannabinoids , 1993, Nature.

[54]  J. Olesen,et al.  Nitric oxide supersensitivity: a possible molecular mechanism of migraine pain. , 1993, Neuroreport.

[55]  S. Hunskaar,et al.  The formalin test: an evaluation of the method , 1992, Pain.

[56]  M. Zimmermann,et al.  Ethical guidelines for investigations of experimental pain in conscious animals , 1983, Pain.

[57]  R. T. Verrillo,et al.  Effects of root or nerve destruction on vibrotactile sensitivity in trigeminal neuralgia , 1977, Pain.

[58]  G. Nappi,et al.  Central Components of the Analgesic/ Antihyperalgesic Effect of Nimesulide: Studies in Animal Models of Pain and Hyperalgesia , 2012, Drugs.

[59]  C. Tassorelli,et al.  Experimental models of migraine. , 2010, Handbook of clinical neurology.

[60]  V. Marzo Endocannabinoid signaling in the brain: biosynthetic mechanisms in the limelight , 2010, Nature Neuroscience.

[61]  M. Moskowitz,et al.  Experimental models of migraine. , 2000, Functional neurology.

[62]  K. Mackie,et al.  Identification functional characterization of brainstem cannabinoid CB2 receptors. , 2022 .