Power Diagrams: Properties, Algorithms and Applications

The power pow $(x,s)$ of a point x with respect to a sphere s in Euclidean d-space $E^d $ is given by $d^2 (x,z) - r^2 $, where d denotes the Euclidean distance function, and z and r are the center and the radius of s. The power diagram of a finite set S of spheres in $E^d $ is a cell complex that associates each $s \in S$ with the convex domain $\{ x \in E^d | {\operatorname{pow}} (x,s) < {\operatorname{pow}} (x,t), {\text{ for all }} t \in S - \{ s\} \}$.The close relationship to convex hulls and arrangements of hyperplanes is investigated and exploited. Efficient algorithms that compute the power diagram and its order-k modifications are obtained. Among the applications of these results are algorithms for detecting k-sets, for union and intersection problems for cones and paraboloids, and for constructing weighted Voronoi diagrams and Voronoi diagrams for spheres. Upper space bounds for these geometric problems are derived.

[1]  Kevin Q. Brown,et al.  Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..

[2]  Herbert Edelsbrunner,et al.  On the Number of Line Separations of a Finite Set in the Plane , 1985, J. Comb. Theory, Ser. A.

[3]  D. T. Lee,et al.  Two-Dimensional Voronoi Diagrams in the Lp-Metric , 1980, J. ACM.

[4]  L. Tóth Illumination of convex discs , 1977 .

[5]  L. Tóth Lagerungen in der Ebene auf der Kugel und im Raum , 1953 .

[6]  B. Boots Weighting Thiessen Polygons , 1980 .

[7]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[8]  Franz Aurenhammer,et al.  An optimal algorithm for constructing the weighted voronoi diagram in the plane , 1984, Pattern Recognit..

[9]  D. T. Lee,et al.  On k-Nearest Neighbor Voronoi Diagrams in the Plane , 1982, IEEE Transactions on Computers.

[10]  G. Alexanderson,et al.  Simple Partitions of Space , 1978 .

[11]  J. Linhart,et al.  Dirichletsche Zellenkomplexe mit maximaler Eckenzahl , 1981 .

[12]  N. Meyers,et al.  H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.