RF p-GaN HEMT With 0.9-dB Noise Figure and 12.8-dB Associated Gain for LNA Applications

Low-noise amplification performance of an enhancement-mode p- GaN gate high electron mobility transistor (HEMT) is thoroughly investigated. Featuring a tungsten (W) gate metal and CMOS-compatible metal contacts to source/drain terminals, the device exhibits a positive threshold voltage of 2.7 V. Low gate leakage current density (<inline-formula> <tex-math notation="LaTeX">$\text{I}_{\text {G}}{)}$ </tex-math></inline-formula> of 3.8 pA/mm and 16.3 nA/mm are extracted in pinch-off region and on-state region, respectively. The device delivers an input third-order interception point (IIP3) of 15.8 dBm at 2 GHz, together with good immunity of linearity characteristics against frequency change. A minimum noise figure (<inline-formula> <tex-math notation="LaTeX">$NF_{\text {min}}{)}$ </tex-math></inline-formula> of 0.9 dB with an associated gain (<inline-formula> <tex-math notation="LaTeX">$\text{G}_{\text {a}}{)}$ </tex-math></inline-formula> of 12.8 dB are achieved at a working frequency of 2 GHz. Furthermore, an examination of the bias and frequency effects on NFmin and <inline-formula> <tex-math notation="LaTeX">$\text{G}_{\text {a}}$ </tex-math></inline-formula> reveals NFmin of 0.65 dB and <inline-formula> <tex-math notation="LaTeX">$\text{G}_{\text {a}}$ </tex-math></inline-formula> of 18.3 dB at 1 GHz. This work paves a solid path for the utilization of <inline-formula> <tex-math notation="LaTeX">${p}$ </tex-math></inline-formula>-GaN HEMT for low noise amplifier applications.

[1]  N. Rorsman,et al.  Noise Characterization and Modeling of GaN-HEMTs at Cryogenic Temperatures , 2023, IEEE Transactions on Microwave Theory and Techniques.

[2]  Zheyang Zheng,et al.  RF Enhancement-Mode -GaN Gate HEMT on 200 mm-Si Substrates , 2023, IEEE Electron Device Letters.

[3]  T. Zwick,et al.  Broadband 100-W Ka-Band SSPA Based on GaN Power Amplifiers , 2022, IEEE Microwave and Wireless Components Letters.

[4]  Baile Chen,et al.  Temperature-Dependent Dynamic Performance of p-GaN Gate HEMT on Si , 2022, IEEE Transactions on Electron Devices.

[5]  Baile Chen,et al.  Study of minority carrier traps in p-GaN gate HEMT by optical deep level transient spectroscopy , 2022, Applied Physics Letters.

[6]  Yitian Gu,et al.  Demonstration and modeling of frequency tripler based on GaN Schottky diode pair , 2022, Microelectron. J..

[7]  D. Lie,et al.  A Highly Efficient 18–40 GHz Linear Power Amplifier in 40-nm GaN for mm-Wave 5G , 2021, IEEE Microwave and Wireless Components Letters.

[8]  Tao Chen,et al.  RF Linearity Enhancement of GaN-on-Si HEMTs With a Closely Coupled Double-Channel Structure , 2021, IEEE Electron Device Letters.

[9]  Kevin J. Chen,et al.  GaN HEMT With Convergent Channel for Low Intrinsic Knee Voltage , 2020, IEEE Electron Device Letters.

[10]  Meng-Chyi Wu,et al.  Improved DC and RF Performance of Novel MIS p-GaN-Gated HEMTs by Gate-All-Around Structure , 2020, IEEE Electron Device Letters.

[11]  E. Beam,et al.  Improved DC-RF dispersion with epitaxial passivation for high linearity graded AlGaN channel field effect transistors , 2020, Applied Physics Express.

[12]  Hongyu Yu,et al.  Gate Leakage Suppression and Breakdown Voltage Enhancement in p-GaN HEMTs Using Metal/Graphene Gates , 2019, IEEE Transactions on Electron Devices.

[13]  Baoshun Zhang,et al.  Gate leakage mechanisms in normally off p-GaN/AlGaN/GaN high electron mobility transistors , 2018, Applied Physics Letters.

[14]  L.F. Tiemeijer,et al.  Improved Y-factor method for wide-band on-wafer noise-parameter measurements , 2005, IEEE Transactions on Microwave Theory and Techniques.

[15]  A. Cappy,et al.  Design optimization of AlInAs-GalnAs HEMTs for low-noise applications , 2004, IEEE Transactions on Electron Devices.

[16]  I. Adesida,et al.  Microwave noise characteristics of AlGaN/GaN HEMTs on SiC substrates for broad-band low-noise amplifiers , 2004, IEEE Microwave and Wireless Components Letters.

[17]  Hongtao Xu,et al.  The effect of gate leakage on the noise figure of AlGaN/GaN HEMTs , 2006, IEEE Electron Device Letters.

[18]  Hermann A. Haus,et al.  Signal and Noise Properties of Gallium Arsenide Microwave Field-Effect-Transistors , 1975 .