Rate-equation description of multi-mode semiconductor lasers

A set of rate equations is derived describing the deterministic multi-mode dynamics of a semiconductor laser. Mutual interactions among the lasing modes, induced by high-frequency modulations of the carrier distribution, are described by carrier-inversion moments and lead to special spectral content of each spatial mode. The diffusion of carriers is shown to play an important role in determining the spectral properties of the field. The Bogatov effect of asymmetric gain suppression in semiconductor lasers will be derived. We will explicitly discuss the nontrivial relationship between the modes of the nonlinear cavity and the optical spectrum of the laser output and illustrate this for a two and three-mode laser.

[2]  Paul Mandel,et al.  Theoretical Problems in Cavity Nonlinear Optics , 1997 .

[3]  Minoru Yamada,et al.  Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers , 1989 .

[4]  Adonis Bogris,et al.  Chaos-based communications at high bit rates using commercial fibre-optic links , 2006, SPIE/OSA/IEEE Asia Communications and Photonics.

[5]  J. Mørk,et al.  On mode coupling and low-frequency fluctuations in external-cavity laser diodes , 1997 .

[6]  Weiss,et al.  Evidence for Lorenz-type chaos in a laser. , 1986, Physical review letters.

[7]  H. Statz,et al.  Spectral Output and Spiking Behavior of Solid‐State Lasers , 1963 .

[8]  S. Balle,et al.  Mode-switching in semiconductor lasers , 2004, IEEE Journal of Quantum Electronics.

[9]  K. A. Shore,et al.  Chaotic message broadcasting using DFB laser diodes , 2004 .

[10]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[11]  Jerome V Moloney,et al.  Effective Bloch equations for semiconductor lasers and amplifiers , 1997 .

[12]  B. Sverdlov,et al.  Anomalous interaction of spectral modes in a semiconductor laser , 1975, IEEE Journal of Quantum Electronics.

[13]  Salvador Balle,et al.  Mode competition in a Fabry-Perot semiconductor laser: travelling wave model with asymmetric dynamical gain , 1996 .

[14]  C. Henry Theory of the phase noise and power spectrum of a single mode injection laser , 1983 .

[15]  L. Casperson,et al.  Gain and saturation in semiconductor lasers , 1993 .

[16]  A. Bogatov,et al.  Suppression and spectral splitting of the amplitude noise due to mode beatings in a single-frequency injection laser , 1987 .

[17]  M. Yamada,et al.  Influence of instantaneous mode competition on the dynamics of semiconductor lasers , 2002 .

[18]  Daan Lenstra,et al.  Bifurcations of relaxation oscillations in an optically injected diode laser , 1997 .

[19]  M. Sargent Laser saturation grating phenomena , 1976 .

[20]  Ingo Fischer,et al.  Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication , 2000 .

[21]  D. Lenstra,et al.  Experimental and theoretical study of filtered optical feedback in a semiconductor laser , 2000, IEEE Journal of Quantum Electronics.

[22]  R. Lang,et al.  External optical feedback effects on semiconductor injection laser properties , 1980 .

[23]  C. R. Mirasso,et al.  ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers. (Invited paper) , 2002 .

[24]  Ingo Fischer,et al.  Spectral broadband dynamics of semiconductor lasers with resonant short cavities , 2006 .

[25]  P. Colet,et al.  Criteria for synchronization of coupled chaotic external-cavity semiconductor lasers , 2002, IEEE Photonics Technology Letters.

[26]  Daan Lenstra,et al.  The dynamical complexity of optically injected semiconductor lasers , 2005 .

[27]  P. Mandel Global rate equation description of a laser , 2000 .

[28]  J. Tredicce,et al.  Stochastic resonance in bulk semiconductor lasers. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Min Won Lee,et al.  Comparison of closed-loop and open-loop feedback schemes of message decoding using chaotic laser diodes. , 2003, Optics letters.

[30]  Jerome V. Moloney,et al.  Travelling wave model of a multimode Fabry-Perot laser in free running and external cavity configurations , 1996 .

[31]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[32]  Daan Lenstra,et al.  Semiconductor lasers with optical injection and feedback , 1995 .

[33]  D. Renner,et al.  Long-wavelength semiconductor lasers , 1987, IEEE Journal of Quantum Electronics.

[34]  Evgeny A. Viktorov,et al.  Dynamics of multimode semiconductor lasers , 2003 .

[35]  Mork,et al.  Route to chaos and competition between relaxation oscillations for a semiconductor laser with optical feedback. , 1990, Physical review letters.

[36]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[37]  Meucci,et al.  Laser dynamics with competing instabilities. , 1987, Physical review letters.

[38]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[39]  Daan Lenstra,et al.  Global quantitative predictions of complex laser dynamics. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Meucci,et al.  Generation of chaotic dynamics by feedback on a laser. , 1986, Physical review. A, General physics.