Surface unit characterization of the Mauna Ulu flow field, Kilauea Volcano, Hawai'i, using integrated field and remote sensing analyses
暂无分享,去创建一个
David A. Crown | Michael S. Ramsey | D. Crown | M. Ramsey | J. M. Byrnes | Jeffrey M. Byrnesa | Michael S. Ramseya | David A. Crowna
[1] D. Crown,et al. Relationships between pahoehoe surface units, topography, and lava tubes at Mauna Ulu, Kilauea Volcano, Hawaii , 1999 .
[2] L. Keszthelyi,et al. Calculation of lava effusion rates from Landsat TM data , 1998 .
[3] Michael S. Ramsey,et al. Strategies, insights, and the recent advances in volcanic monitoring and mapping with data from NASA's Earth Observing System , 2004 .
[4] S. Morse,et al. Igneous petrology , 1980, Nature.
[5] James P. Kauahikaua,et al. Reevaluation of vesicle distributions in basaltic lava flows , 1997 .
[6] K. Hon,et al. Thermal efficiency of lava tubes in the Pu'u 'ō'Ō-Kupaianaha eruption , 2003 .
[7] Anne B. Kahle,et al. Separation of temperature and emittance in remotely sensed radiance measurements , 1992 .
[8] D. W. Peterson,et al. Flow of Lava into the Sea, 1969–1971, Kilauea Volcano, Hawaii , 1973 .
[9] D. Crown,et al. Pahoehoe toe dimensions, morphology, and branching relationships at Mauna Ulu, Kilauea Volcano, Hawai'i , 1999 .
[10] P. Christensen,et al. Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration , 1997 .
[11] Yasushi Yamaguchi,et al. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..
[12] J. Kauahikaua,et al. Hawaiian lava-flow dynamics during the Pu'u 'ō'Ō-KŪpaianaha eruption: A tale of two decades , 2003 .
[13] R. Sparks,et al. The 1975 sub-terminal lavas, mount etna: a case history of the formation of a compound lava field , 1976 .
[14] P. Christensen,et al. Mapping the distribution of vesicular textures on silicic lavas using the Thermal Infrared Multispectral Scanner , 1993 .
[15] D. W. Peterson,et al. Transition of basaltic lava from pahoehoe to aa, Kilauea Volcano, Hawaii: Field observations and key factors , 1980 .
[16] R. Vincent,et al. Spectral compositional imaging of silicate rocks. , 1972 .
[17] J. Thomson,et al. The mid-infrared reflectance of mineral mixtures (7-14 microns) , 1993 .
[18] Roger P. Denlinger,et al. The initial cooling of pahoehoe flow lobes , 1996 .
[19] J. Salisbury,et al. Spectral characterization of igneous rocks in the 8‐ to 12‐μm region , 1989 .
[20] G. Walker,et al. Structure, and origin by injection of lava under surface crust, of tumuli, “lava rises”, “lava-rise pits”, and “lava-inflation clefts” in Hawaii , 1991 .
[21] P. S. Kealy,et al. A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies , 1992 .
[22] J. Salisbury,et al. Emissivity of terrestrial materials in the 3–5 μm atmospheric window☆ , 1992 .
[23] M. Ramsey,et al. Mineral abundance determination: Quantitative deconvolution of thermal emission spectra , 1998 .
[24] Michael S. Ramsey,et al. Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER data into near real-time monitoring using AVHRR , 2004 .
[25] D. Swanson. Pahoehoe Flows from the 1969–1971 Mauna Ulu Eruption, Kilauea Volcano, Hawaii , 1973 .
[26] Robert K. Vincent,et al. Recognition of exposed quartz sand and sandstone by two‐channel infrared imagery , 1972 .
[27] Vincent J. Realmuto,et al. Multispectral thermal infrared mapping of the 1 October 1988 Kupaianaha flow field, Kilauea volcano, Hawaii , 1992 .
[28] R. Holcomb. Preliminary map showing products of eruptions, 1962-1974, from the Upper East Rift Zone of Kilauea Volcano, Hawaii , 1976 .
[29] G. Walker. Compound and simple lava flows and flood basalts , 1971 .
[30] J. P. Kauahikaua,et al. Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea volcano, Hawaii , 1994 .
[31] A. Gillespie. Spectral mixture analysis of multispectral thermal infrared images , 1992 .
[32] David C. Pieri,et al. ASTER watches the world's volcanoes: a new paradigm for volcanological observations from orbit , 2004 .
[33] S. Hook,et al. The MODIS/ASTER airborne simulator (MASTER) - a new instrument for earth science studies , 2001 .
[34] Anne B. Kahle,et al. Thermal infrared spectral character of Hawaiian basaltic glasses , 1990 .
[35] S. Rowland,et al. Pahoehoe and aa in Hawaii: volumetric flow rate controls the lava structure , 1990 .
[36] R. E. Walker,et al. Relative dating of Hawaiian lava flows using multispectral thermal infrared images: A new tool for geologic mapping of young volcanic terranes , 1988 .
[37] M. Ramsey,et al. Estimating silicic lava vesicularity with thermal remote sensing: a new technique for volcanic mapping and monitoring , 1999 .
[38] G. Walker,et al. P-type and S-type pahoehoe: a study of vesicle distribution patterns in Hawaiian lava flows , 1993 .
[39] John W. Salisbury,et al. Emissivity of terrestrial materials in the 8-14 microns atmospheric window , 1992 .
[40] J. P. Kauahikaua,et al. Development of the 1990 Kalapana Flow Field, Kilauea Volcano, Hawaii , 1993 .
[41] D. Crown,et al. Thermal Remote Sensing Characteristics of Basaltic Lava Flow Surface Units: Implications for Flow Field Evolution , 2000 .
[42] J. Kauahikaua,et al. Textural characterization of the pāhoeho–‘a‘a transition in Hawaiian basalt , 1999 .
[43] S. Rowland,et al. Toothpaste lava: Characteristics and origin of a lava structural type transitional between pahoehoe and aa , 1987 .
[44] D. W. Peterson,et al. Chronological narrative of the 1969-71 Mauna Ulu eruption of Kilauea Volcano, Hawaii , 1979 .