Graph-Walking Automata: From Whence They Come, and Whither They are Bound

Graph-walking automata are finite automata walking on graphs given as an input; tree-walking automata and two-way finite automata are their well-known special cases. Graph-walking automata can be regarded both as a model of navigation in an unknown environment, and as a generic computing device, with the graph as the model of its memory. This paper presents the known results on these automata, ranging from their limitations in traversing graphs, studied already in the 1970s, to the recent work on the logical reversibility of their computations.

[1]  Andrzej Pelc,et al.  Exploring unknown undirected graphs , 1999, SODA '98.

[2]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[3]  Wolfgang Thomas On Logics, Tilings, and Automata , 1991, ICALP.

[4]  Thomas Colcombet,et al.  Tree-Walking Automata Cannot Be Determinized , 2006, ICALP.

[5]  Richard J. Lipton,et al.  Random walks, universal traversal sequences, and the complexity of maze problems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[6]  Alexander Okhotin,et al.  Reversibility of Computations in Graph-Walking Automata , 2013, MFCS.

[7]  Amr Elmasry,et al.  Space-efficient Basic Graph Algorithms , 2015, STACS.

[8]  Christos A. Kapoutsis Two-Way Automata Versus Logarithmic Space , 2011, Theory of Computing Systems.

[9]  Carlo Mereghetti,et al.  Complementing two-way finite automata , 2007, Inf. Comput..

[10]  Carlo Mereghetti,et al.  Complementing Two-Way Finite Automata , 2007, Developments in Language Theory.

[11]  Christos A. Kapoutsis Removing Bidirectionality from Nondeterministic Finite Automata , 2005, MFCS.

[12]  Alexander Okhotin,et al.  Describing Periodicity in Two-Way Deterministic Finite Automata Using Transformation Semigroups , 2011, Developments in Language Theory.

[13]  Yota Otachi,et al.  Depth-First Search Using O(n) Bits , 2014, ISAAC.

[14]  Alfred V. Aho,et al.  Translations on a context free grammar , 1969, STOC.

[15]  Manuel Blum,et al.  On the power of the compass (or, why mazes are easier to search than graphs) , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[16]  Pierre McKenzie,et al.  Reversible Space Equals Deterministic Space , 2000, J. Comput. Syst. Sci..

[17]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[18]  Hans-Anton Rollik,et al.  Automaten in planaren Graphen , 1979, Acta Informatica.

[19]  Carlo Mereghetti,et al.  Converting Two-Way Nondeterministic Unary Automata into Simpler Automata , 2001, MFCS.

[20]  Michael Sipser,et al.  Halting space-bounded computations , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[21]  Max Klimm,et al.  Undirected Graph Exploration with ⊝(log log n) Pebbles , 2016, SODA.

[22]  Kenichi Morita A Deterministic Two-Way Multi-head Finite Automaton Can Be Converted into a Reversible One with the Same Number of Heads , 2012, RC.

[23]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[24]  L. Budach Automata and Labyrinths , 1978 .

[25]  Anca Muscholl,et al.  Complementing deterministic tree-walking automata , 2006, Inf. Process. Lett..

[26]  Thomas Colcombet,et al.  Tree-walking automata do not recognize all regular languages , 2005, STOC '05.

[27]  Andrzej Pelc,et al.  Graph exploration by a finite automaton , 2005, Theor. Comput. Sci..

[28]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[29]  Susanne Albers,et al.  Exploring Unknown Environments , 2000, SIAM J. Comput..