Facile fabrication of TiO2-SiO2-C composite with anatase/rutile heterostructure via sol-gel process and its enhanced photocatalytic activity in the presence of H2O2

[1]  Jun Cheng,et al.  Engineering of anatase/rutile TiO2 heterophase junction via in-situ phase transformation for enhanced photocatalytic hydrogen evolution. , 2021, Journal of colloid and interface science.

[2]  Bing-she Xu,et al.  Molecule assembly of heterostructured TiO2@BiOCl via fenton-like reaction for enhanced solar energy conversion , 2021 .

[3]  B. Jaleh,et al.  State-of-the-art technology: Recent investigations on laser-mediated synthesis of nanocomposites for environmental remediation , 2021 .

[4]  Kai Li,et al.  Fabrication and characterization of sugarcane bagasse–calcium carbonate composite for the efficient removal of crystal violet dye from wastewater , 2020, Ceramics International.

[5]  Prasanna D. Shivaramu,et al.  Carbon-based TiO2-x heterostructure nanocomposites for enhanced photocatalytic degradation of dye molecules , 2020 .

[6]  B. Anitha,et al.  Anatase-rutile phase transformation and photocatalysis in peroxide gel route prepared TiO2 nanocrystals: Role of defect states , 2020 .

[7]  Arif Nazir,et al.  Degradation product distribution of Reactive Red-147 dye treated by UV/H2O2/TiO2 advanced oxidation process , 2020 .

[8]  Shuaishuai Ma,et al.  Facile Fabrication of C–TiO2 Nanocomposites with Enhanced Photocatalytic Activity for Degradation of Tetracycline , 2019, ACS omega.

[9]  A. Mukhopadhyay,et al.  Dislocations and particle size governed band gap and ferromagnetic ordering in Ni doped ZnO nanoparticles synthesized via co-precipitation , 2019 .

[10]  D. Zhao,et al.  Defect-engineering of mesoporous TiO2 microspheres with phase junctions for efficient visible-light driven fuel production , 2019 .

[11]  L. Arnaut,et al.  Control of the distance between porphyrin sensitizers and the TiO2 surface in solar cells by designed anchoring groups , 2019, Journal of Molecular Structure.

[12]  B. Neppolian,et al.  Self-doping of Ti3+ in TiO2 through incomplete hydrolysis of titanium (IV) isopropoxide: An efficient visible light sonophotocatalyst for organic pollutants degradation , 2019, Applied Catalysis A: General.

[13]  M. Titirici,et al.  C-doped anatase TiO2: Adsorption kinetics and photocatalytic degradation of methylene blue and phenol, and correlations with DFT estimations. , 2019, Journal of colloid and interface science.

[14]  Zijun Dong,et al.  Effect of crystalline structure on terbuthylazine degradation by H2O2-assisted TiO2 photocatalysis under visible irradiation. , 2019, Journal of environmental sciences.

[15]  G. Gad,et al.  The particle size-dependent optical band gap and magnetic properties of Fe-doped CeO2 nanoparticles , 2019, Solid State Sciences.

[16]  J. Bedia,et al.  C-modified TiO2 using lignin as carbon precursor for the solar photocatalytic degradation of acetaminophen , 2019, Chemical Engineering Journal.

[17]  Q. Meng,et al.  Solvothermal synthesis of dual-porous CeO2-ZnO composite and its enhanced acetone sensing performance , 2019, Ceramics International.

[18]  J. Vequizo,et al.  Enhanced photocatalytic NO decomposition of visible-light responsive F-TiO2/(N,C)-TiO2 by charge transfer between F-TiO2 and (N,C)-TiO2 through their doping levels , 2018, Applied Catalysis B: Environmental.

[19]  D. Zhao,et al.  Mesoporous TiO2 Microspheres with Precisely Controlled Crystallites and Architectures , 2018, Chem.

[20]  S. Pillai,et al.  Black TiO2 Nanomaterials: A Review of Recent Advances , 2018, Chemical Engineering Journal.

[21]  Yan Cao,et al.  Ti 3+ self-doped mesoporous black TiO 2 /SiO 2 nanocomposite as remarkable visible light photocatalyst , 2017 .

[22]  Huijuan Liu,et al.  Oxygen vacancy mediated construction of anatase/brookite heterophase junctions for high-efficiency photocatalytic hydrogen evolution , 2017 .

[23]  M. Xing,et al.  An advanced TiO2/Fe2TiO5/Fe2O3 triple-heterojunction with enhanced and stable visible-light-driven fenton reaction for the removal of organic pollutants , 2017 .

[24]  Tingting Wu,et al.  A direct charger transfer from interface to surface for the highly efficient spatial separation of electrons and holes: The construction of Ti–C bonded interfaces in TiO2-C composite as a touchstone for photocatalytic water splitting , 2017 .

[25]  D. Zhao,et al.  Preparation of Secondary Mesopores in Mesoporous Anatase–Silica Nanocomposites with Unprecedented‐High Photocatalytic Degradation Performances , 2016 .

[26]  R. Landers,et al.  Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles , 2015 .

[27]  Fan Zuo,et al.  Self-doped Ti(3+)-TiO2 as a photocatalyst for the reduction of CO2 into a hydrocarbon fuel under visible light irradiation. , 2015, Nanoscale.

[28]  Shiqi Zhou,et al.  Simultaneous formation of silica-protected and N-doped TiO2 hollow spheres using organic–inorganic silica as self-removed templates , 2015 .

[29]  Q. Jiang,et al.  Enhancing photocatalytic activity of disorder-engineered C/TiO2 and TiO2 nanoparticles , 2014 .

[30]  Yadong Yin,et al.  Control of the crystallinity in TiO2 microspheres through silica impregnation , 2012 .

[31]  Ilkeun Lee,et al.  Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity , 2012 .

[32]  Ilkeun Lee,et al.  Mesoporous Anatase Titania Hollow Nanostructures though Silica‐Protected Calcination , 2012 .

[33]  Xiao Hui Zhu,et al.  Studies on Photocatalytic Degradation of Methylene Blue by Eu3+/Gd3+ Co-Doped TiO2 , 2011 .

[34]  Charles C. Sorrell,et al.  Review of the anatase to rutile phase transformation , 2011 .

[35]  X. Qin,et al.  Positron annihilation study of structural effect on photocatalytic activity of mesoporous TiO2 thin films , 2010 .

[36]  W. Chu,et al.  Linuron decomposition in aqueous semiconductor suspension under visible light irradiation with and without H2O2 , 2010 .

[37]  Mingce Long,et al.  Preparation, characterization and visible-light activity of carbon modified TiO2 with two kinds of carbonaceous species , 2009 .

[38]  A. Testino,et al.  Photocatalytic mineralization of phenol catalyzed by pure and mixed phase hydrothermal titanium dioxide , 2009 .

[39]  H. Fu,et al.  Synthesis and photocatalytic activity of stable nanocrystalline TiO(2) with high crystallinity and large surface area. , 2009, Journal of hazardous materials.

[40]  P. Schmitt‐Kopplin,et al.  Photocatalytic reactions of imazamox at TiO2, H2O2 and TiO2/H2O2 in water interfaces: Kinetic and photoproducts study , 2008 .

[41]  H. Fu,et al.  Investigation on the electron transfer between anatase and rutile in nano-sized TiO2 by means of surface photovoltage technique and its effects on the photocatalytic activity , 2008 .

[42]  I. Hua,et al.  Hydrogen peroxide-assisted UV photodegradation of Lindane. , 2008, Chemosphere.

[43]  Bingshe Xu,et al.  Comparison study on the size and phase control of nanocrystalline TiO2 in three Ti–Si oxide structures , 2008 .

[44]  T. B. Ghosh,et al.  On crystallite size dependence of phase stability of nanocrystalline TiO2 , 2003 .

[45]  H. Myers,et al.  Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer , 1957 .

[46]  J. G. Torres-Torres,et al.  Fabrication of g-C3N4/TiO2 heterojunction composite for enhanced photocatalytic hydrogen production , 2020 .

[47]  Hongyang Liu,et al.  A Unique Disintegration–Reassembly Route to Mesoporous Titania Nanocrystalline Hollow Spheres with Enhanced Photocatalytic Activity , 2018 .

[48]  Wei Zhou,et al.  Facile synthesis of high-thermostably ordered mesoporous TiO2/SiO2 nanocomposites: An effective bifunctional candidate for removing arsenic contaminations. , 2017, Journal of colloid and interface science.

[49]  Hongyang Liu,et al.  Crystallinity control of TiO2 hollow shells through resin-protected calcination for enhanced photocatalytic activity , 2015 .

[50]  Frank Caruso,et al.  Nanoengineering of particle surfaces. , 2001 .