Parameter Estimation for Generalized Thurstone Choice Models
暂无分享,去创建一个
[1] E. Zermelo. Die Berechnung der Turnier-Ergebnisse als ein Maximumproblem der Wahrscheinlichkeitsrechnung , 1929 .
[2] R. A. Bradley,et al. RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .
[3] R. A. Bradley. The rank analysis of incomplete block designs. II. Additional tables for the method of paired comparisons. , 1954 .
[4] R. Luce,et al. Individual Choice Behavior: A Theoretical Analysis. , 1960 .
[5] R. Dawkins. A threshold model of choice behaviour , 1969 .
[6] J. Yellott. The relationship between Luce's Choice Axiom, Thurstone's Theory of Comparative Judgment, and the double exponential distribution , 1977 .
[7] R. Duncan Luce,et al. Individual Choice Behavior: A Theoretical Analysis , 1979 .
[8] P. McCullagh,et al. Generalized Linear Models , 1992 .
[9] H. Stern. Are all linear paired comparison models empirically equivalent , 1992 .
[10] L. Thurstone. A law of comparative judgment. , 1994 .
[11] Eric R. Ziegel,et al. Generalized Linear Models , 2002, Technometrics.
[12] Thomas P. Hayes. A large-deviation inequality for vector-valued martingales , 2003 .
[13] Tom Minka,et al. TrueSkillTM: A Bayesian Skill Rating System , 2006, NIPS.
[14] Stephen P. Boyd. Convex optimization of graph Laplacian eigenvalues , 2006 .
[15] Kevin P. Murphy,et al. Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.
[16] Devavrat Shah,et al. Iterative ranking from pair-wise comparisons , 2012, NIPS.
[17] Bruce E. Hajek,et al. Minimax-optimal Inference from Partial Rankings , 2014, NIPS.
[18] Arun Rajkumar,et al. A Statistical Convergence Perspective of Algorithms for Rank Aggregation from Pairwise Data , 2014, ICML.
[19] Joel A. Tropp,et al. An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..
[20] Milan Vojnovic,et al. Contest Theory: Incentive Mechanisms and Ranking Methods , 2016 .