Childhood-onset dystonia-causing KMT2B variants result in a distinctive genomic hypermethylation profile

[1]  Meghan C Towne,et al.  SPEN haploinsufficiency causes a neurodevelopmental disorder overlapping proximal 1p36 deletion syndrome with an episignature of X chromosomes in females. , 2021, American journal of human genetics.

[2]  R. Stevenson,et al.  Clinical epigenomics: genome-wide DNA methylation analysis for the diagnosis of Mendelian disorders , 2021, Genetics in Medicine.

[3]  Kelly A. Mills,et al.  KMT2B-related disorders: expansion of the phenotypic spectrum and long-term efficacy of deep brain stimulation. , 2020, Brain : a journal of neurology.

[4]  A. Oshlack,et al.  Gene set enrichment analysis for genome-wide DNA methylation data , 2020, Genome Biology.

[5]  M. Shaw,et al.  Evaluation of DNA Methylation Episignatures for Diagnosis and Phenotype Correlations in 42 Mendelian Neurodevelopmental Disorders. , 2020, American journal of human genetics.

[6]  B. Dallapiccola,et al.  Frameshift mutations at the C-terminus of HIST1H1E result in a specific DNA hypomethylation signature , 2020, Clinical epigenetics.

[7]  J. Winkelmann,et al.  Update on KMT2B-Related Dystonia , 2019, Current Neurology and Neuroscience Reports.

[8]  Lea M. Starita,et al.  Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework , 2019, Genome Medicine.

[9]  Jing Wang,et al.  WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs , 2019, Nucleic Acids Res..

[10]  I. Krantz,et al.  Diagnostic Utility of Genome-wide DNA Methylation Testing in Genetically Unsolved Individuals with Suspected Hereditary Conditions. , 2019, American journal of human genetics.

[11]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[12]  G. Vriend,et al.  MetaDome: Pathogenicity analysis of genetic variants through aggregation of homologous human protein domains , 2019, bioRxiv.

[13]  A. F. Stewart,et al.  KMT2B Is Selectively Required for Neuronal Transdifferentiation, and Its Loss Exposes Dystonia Candidate Genes , 2018, Cell reports.

[14]  Brent S. Pedersen,et al.  A map of constrained coding regions in the human genome , 2017, bioRxiv.

[15]  Brent S. Pedersen,et al.  GIGGLE: a search engine for large-scale integrated genome analysis , 2017, Nature Methods.

[16]  T. Strom,et al.  KMT2B rare missense variants in generalized dystonia , 2017, Movement disorders : official journal of the Movement Disorder Society.

[17]  K. Lohmann,et al.  Update on the Genetics of Dystonia , 2017, Current Neurology and Neuroscience Reports.

[18]  Hagai Bergman,et al.  Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia , 2016, Nature Genetics.

[19]  W. Poewe,et al.  Haploinsufficiency of KMT2B, Encoding the Lysine-Specific Histone Methyltransferase 2B, Results in Early-Onset Generalized Dystonia. , 2016, American journal of human genetics.

[20]  Christina N. Vallianatos,et al.  Disrupted intricacy of histone H3K4 methylation in neurodevelopmental disorders. , 2015, Epigenomics.

[21]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[22]  Peter L Molloy,et al.  De novo identification of differentially methylated regions in the human genome , 2015, Epigenetics & Chromatin.

[23]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[24]  Erica Y. Shen,et al.  Regulation of histone H3K4 methylation in brain development and disease , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[25]  Rafael A. Irizarry,et al.  Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays , 2014, Bioinform..

[26]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[27]  A. F. Stewart,et al.  Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant , 2014, Development.

[28]  Ruth Pidsley,et al.  A data-driven approach to preprocessing Illumina 450K methylation array data , 2013, BMC Genomics.

[29]  J. Whetstine,et al.  Histone lysine methylation dynamics: establishment, regulation, and biological impact. , 2012, Molecular cell.

[30]  Devin C. Koestler,et al.  DNA methylation arrays as surrogate measures of cell mixture distribution , 2012, BMC Bioinformatics.

[31]  E. Feierstein,et al.  DNA Methylation of the First Exon Is Tightly Linked to Transcriptional Silencing , 2011, PloS one.

[32]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[33]  Madeleine P. Ball,et al.  Corrigendum: Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells , 2009, Nature Biotechnology.

[34]  Israel Steinfeld,et al.  Developmental programming of CpG island methylation profiles in the human genome , 2009, Nature Structural &Molecular Biology.

[35]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[36]  Shirley A. Miller,et al.  A simple salting out procedure for extracting DNA from human nucleated cells. , 1988, Nucleic acids research.

[37]  S. Baylin,et al.  A KDM5 Inhibitor Increases Global H3K4 Trimethylation Occupancy and Enhances the Biological Efficacy of 5-Aza-2'-Deoxycytidine. , 2018, Cancer research.

[38]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..