Leakage Detection In a Fuel Evaporative System

Abstract On-Board Diagnostics (OBD) regulations require that the fuel system in personal vehicles must be supervised for leakages. Legislative requirement on the smallest leakage size that has to be detected is decreasing and at the same time the requirement on number of leakage checks are increasing. A consequence is that detection must be performed under more and more diverse operating conditions. This paper describes a vacuum-decay based approach for evaporative leak detection. The approach requires no additional hardware such as pumps or pressure regulators, it only utilizes the pressure sensor that is mounted in the fuel tank. A detection algorithm is proposed that detects small leakages under different operating conditions. The method is based on a first principles physical model of the pressure in the fuel tank. Careful statistical analysis of the model and measurement data together with statistical maximum-likelihood estimation methods, results in a systematic design procedure that is easily tuned with few and intuitive parameters. The approach has been successfully evaluated on real data measured in a research laboratory.