Paclitaxel-conjugated PAMAM dendrimers adversely affect microtubule structure through two independent modes of action.

Paclitaxel (Taxol) is an anticancer drug that induces mitotic arrest via microtubule hyperstabilization but causes side effects due to its hydrophobicity and cellular promiscuity. The targeted cytotoxicity of hydrophilic paclitaxel-conjugated polyamidoamine (PAMAM) dendrimers has been demonstrated in cultured cancer cells. Mechanisms of action responsible for this cytotoxicity are unknown, that is, whether the cytotoxicity is due to paclitaxel stabilization of microtubules, as is whether paclitaxel is released intracellularly from the dendrimer. To determine whether the conjugated paclitaxel can bind microtubules, we used a combination of ensemble and single microtubule imaging techniques in vitro. We demonstrate that these conjugates adversely affect microtubules by (1) promoting the polymerization and stabilization of microtubules in a paclitaxel-dependent manner, and (2) bundling preformed microtubules in a paclitaxel-independent manner, potentially due to protonation of tertiary amines in the dendrimer interior. Our results provide mechanistic insights into the cytotoxicity of paclitaxel-conjugated PAMAM dendrimers and uncover unexpected risks of using such conjugates therapeutically.

[1]  M. Barash,et al.  Best practices for purification and characterization of PAMAM dendrimer. , 2012, Macromolecules.

[2]  J. Gaertig,et al.  Microtubules: MEC-17 Moonlights in the Lumen , 2012, Current Biology.

[3]  B. Yan,et al.  Enabling Anticancer Therapeutics by Nanoparticle Carriers: The Delivery of Paclitaxel , 2011, International journal of molecular sciences.

[4]  D. Pastré,et al.  Rapid assembly and collective behavior of microtubule bundles in the presence of polyamines. , 2011, Biophysical journal.

[5]  M. Mahmoudi,et al.  Protein-nanoparticle interactions: opportunities and challenges. , 2011, Chemical reviews.

[6]  V. Castranova,et al.  Nanotoxicology—A Pathologist’s Perspective , 2011, Toxicologic pathology.

[7]  I. Ali,et al.  Advances in nano drugs for cancer chemotherapy. , 2011, Current cancer drug targets.

[8]  Tomas S Jonaitis,et al.  An appraisal of the published literature on the safety and toxicity of food-related nanomaterials , 2011, Critical reviews in toxicology.

[9]  M. Goodman,et al.  The major α-tubulin K40 acetyltransferase αTAT1 promotes rapid ciliogenesis and efficient mechanosensation , 2010, Proceedings of the National Academy of Sciences.

[10]  S. Shaw,et al.  A MAP for Bundling Microtubules , 2010, Cell.

[11]  P. Kesharwani,et al.  Dendrimer toxicity: Let's meet the challenge. , 2010, International journal of pharmaceutics.

[12]  E. Katayama,et al.  One-dimensional Brownian motion of charged nanoparticles along microtubules: a model system for weak binding interactions. , 2010, Biophysical journal.

[13]  Thommey P. Thomas,et al.  Cationic poly(amidoamine) dendrimer induces lysosomal apoptotic pathway at therapeutically relevant concentrations. , 2009, Biomacromolecules.

[14]  E. Simanek,et al.  Design, synthesis, characterization, and biological evaluation of triazine dendrimers bearing paclitaxel using ester and ester/disulfide linkages. , 2009, Bioconjugate chemistry.

[15]  Ajay Kumar,et al.  Surface modified poly(amido)amine dendrimers as diverse nanomolecules for biomedical applications , 2009, Expert opinion on drug delivery.

[16]  Narendra Kumar Jain,et al.  Dendrimers in oncology: an expanding horizon. , 2009, Chemical reviews.

[17]  Anthony J. Manzo,et al.  Do-it-yourself guide: how to use the modern single-molecule toolkit , 2008, Nature Methods.

[18]  Kristen N. Duthie,et al.  Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. , 2008, Nano letters.

[19]  H. Brem,et al.  Paclitaxel: a review of adverse toxicities and novel delivery strategies , 2007, Expert opinion on drug safety.

[20]  Vicki Stone,et al.  Toxicology of nanoparticles: A historical perspective , 2007 .

[21]  Philip S Low,et al.  Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging , 2006, Proceedings of the National Academy of Sciences.

[22]  Thommey P. Thomas,et al.  PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. , 2006, Biomacromolecules.

[23]  R. Scheller,et al.  Oxidizing potential of endosomes and lysosomes limits intracellular cleavage of disulfide-based antibody-drug conjugates. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Thommey P. Thomas,et al.  Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. , 2005, Journal of medicinal chemistry.

[25]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[26]  B. Orr,et al.  Deformability of poly(amidoamine) dendrimers , 2004, The European physical journal. E, Soft matter.

[27]  Thomas Walz,et al.  Negative Staining and Image Classification – Powerful Tools in Modern Electron Microscopy , 2004, Biological Procedures Online.

[28]  Andreas Hoenger,et al.  Modulation of kinesin binding by the C‐termini of tubulin , 2004, The EMBO journal.

[29]  W. Goddard,et al.  Dendritic chelating agents. 1. Cu(II) binding to ethylene diamine core poly(amidoamine) dendrimers in aqueous solutions. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[30]  M. Castoldi,et al.  Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. , 2003, Protein expression and purification.

[31]  D. Fygenson,et al.  Mobility of taxol in microtubule bundles. , 2003, Biophysical journal.

[32]  E. Meyhöfer,et al.  Single fungal kinesin motor molecules move processively along microtubules. , 2003, Biophysical journal.

[33]  D. Kerr,et al.  Reductively activated disulfide prodrugs of paclitaxel. , 2002, Bioorganic & medicinal chemistry letters.

[34]  D. Tomalia,et al.  Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. , 2001, Drug discovery today.

[35]  T. H. Wang,et al.  Paclitaxel‐induced cell death , 2000, Cancer.

[36]  D. Millar,et al.  Physicochemical characterization of generation 5 polyamidoamine dendrimers. , 2000, Biopolymers.

[37]  E. Nogales,et al.  High-Resolution Model of the Microtubule , 1999, Cell.

[38]  P. Chacón,et al.  Changes in Microtubule Protofilament Number Induced by Taxol Binding to an Easily Accessible Site , 1998, The Journal of Biological Chemistry.

[39]  W. B. Derry,et al.  Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. , 1996, Cancer research.

[40]  R A Milligan,et al.  Kinesin follows the microtubule's protofilament axis , 1993, The Journal of cell biology.

[41]  A. Hyman,et al.  Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. , 1992, Molecular biology of the cell.

[42]  F Metoz,et al.  Lattice defects in microtubules: protofilament numbers vary within individual microtubules , 1992, The Journal of cell biology.

[43]  D. Guénard,et al.  Relationships between the structure of taxol analogues and their antimitotic activity. , 1991, Journal of medicinal chemistry.

[44]  William A. Goddard,et al.  Starburst Dendrimers: Molecular‐Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter , 1990 .

[45]  N. F. Magri,et al.  Preparation and biological activity of taxol acetates. , 1984, Biochemical and biophysical research communications.

[46]  J Parness,et al.  Taxol binds to polymerized tubulin in vitro , 1981, The Journal of cell biology.

[47]  Pfeiffer,et al.  Microtubule assembly and disassembly at alkaline pH , 1981, The Journal of cell biology.

[48]  J. Olmsted,et al.  The quantitation of tubulin in neuroblastoma cells by radioimmunoassay. , 1980, The Journal of biological chemistry.

[49]  K. Weber,et al.  Radioimmunoassay for tubulin: a quantitative comparison of the tubulin content of different established tissue culture cells and tissues , 1978, Cell.

[50]  C. Cantor,et al.  Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. , 1974, Journal of molecular biology.

[51]  Thommey P. Thomas,et al.  Dendrimer-based multivalent methotrexates as dual acting nanoconjugates for cancer cell targeting. , 2012, European journal of medicinal chemistry.

[52]  Martin J. D. Clift,et al.  Nanotoxicology: a perspective and discussion of whether or not in vitro testing is a valid alternative , 2010, Archives of Toxicology.

[53]  K. Middleton,et al.  A tubulin polymerization microassay used to compare ligand efficacy. , 2010, Methods in cell biology.

[54]  T. Xu,et al.  Pharmaceutical applications of dendrimers: promising nanocarriers for drug delivery. , 2008, Frontiers in bioscience : a journal and virtual library.

[55]  Taesung Kim,et al.  Active alignment of microtubules with electric fields. , 2007, Nano letters.

[56]  Beat Ernst,et al.  Drug discovery today. , 2003, Current topics in medicinal chemistry.

[57]  R. Craig,et al.  Capturing time-resolved changes in molecular structure by negative staining. , 2003, Journal of Structural Biology.

[58]  David Odde Diffusion inside microtubules , 1998, European Biophysics Journal.

[59]  M. R. Mejillano,et al.  Synthesis and evaluation of some water-soluble prodrugs and derivatives of taxol with antitumor activity. , 1992, Journal of medicinal chemistry.

[60]  D. Chrétien,et al.  New data on the microtubule surface lattice , 1991, Biology of the cell.

[61]  James R. Dewald,et al.  A New Class of Polymers: Starburst-Dendritic Macromolecules , 1985 .