The antioxidant Trolox restores mitochondrial membrane potential and Ca2+-stimulated ATP production in human complex I deficiency

[1]  H. Rolleston The Cambridge Medical School: Department of Biochemistry , 2009 .

[2]  J. Smeitink,et al.  Mitigation of NADH: ubiquinone oxidoreductase deficiency by chronic Trolox treatment. , 2008, Biochimica et biophysica acta.

[3]  J. Smeitink,et al.  Mitochondrial Ca2+ homeostasis in human NADH:ubiquinone oxidoreductase deficiency. , 2008, Cell calcium.

[4]  R. Rodenburg,et al.  NDUFA2 complex I mutation leads to Leigh disease. , 2008, American journal of human genetics.

[5]  Ann Saada,et al.  Mitochondrial complex I deficiency caused by a deleterious NDUFA11 mutation , 2008, Annals of neurology.

[6]  J. Smeitink,et al.  Life cell quantification of mitochondrial membrane potential at the single organelle level , 2008, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[7]  Ann Saada,et al.  C6ORF66 is an assembly factor of mitochondrial complex I. , 2008, American journal of human genetics.

[8]  R. Wanders,et al.  Phytanic acid impairs mitochondrial respiration through protonophoric action , 2007, Cellular and Molecular Life Sciences.

[9]  J. Smeitink,et al.  Mitochondrial and cytosolic thiol redox state are not detectably altered in isolated human NADH:ubiquinone oxidoreductase deficiency. , 2007, Biochimica et biophysica acta.

[10]  J. Silke,et al.  Human CIA30 is involved in the early assembly of mitochondrial complex I and mutations in its gene cause disease , 2007, The EMBO journal.

[11]  J. Smeitink,et al.  Human NADH:ubiquinone oxidoreductase deficiency: radical changes in mitochondrial morphology? , 2007, American journal of physiology. Cell physiology.

[12]  J. Smeitink,et al.  Superoxide production is inversely related to complex I activity in inherited complex I deficiency. , 2007, Biochimica et biophysica acta.

[13]  John E. Walker,et al.  Bovine Complex I Is a Complex of 45 Different Subunits* , 2006, Journal of Biological Chemistry.

[14]  Dimphy Zeegers,et al.  Ca2+-mobilizing agonists increase mitochondrial ATP production to accelerate cytosolic Ca2+ removal: aberrations in human complex I deficiency. , 2006, American journal of physiology. Cell physiology.

[15]  A. Leusink,et al.  Decreased agonist-stimulated mitochondrial ATP production caused by a pathological reduction in endoplasmic reticulum calcium content in human complex I deficiency. , 2006, Biochimica et biophysica acta.

[16]  Massimo Zeviani,et al.  Mitochondrial medicine: a metabolic perspective on the pathology of oxidative phosphorylation disorders. , 2006, Cell metabolism.

[17]  E. Shoubridge,et al.  A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy. , 2005, The Journal of clinical investigation.

[18]  P. Brookes,et al.  Mitochondrial H(+) leak and ROS generation: an odd couple. , 2005, Free radical biology & medicine.

[19]  G. Rutter,et al.  Inhibition of Mitochondrial Na (cid:1) -Ca 2 (cid:1) Exchange Restores Agonist-induced ATP Production and Ca 2 (cid:1) Handling in Human Complex I Deficiency* , 2004 .

[20]  Robert W. Taylor,et al.  NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency. , 2004, The Journal of clinical investigation.

[21]  M. Duchen Mitochondria in health and disease: perspectives on a new mitochondrial biology. , 2004, Molecular aspects of medicine.

[22]  J. Smeitink,et al.  Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency. , 2004, Human molecular genetics.

[23]  A. J. Lambert,et al.  Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production. , 2004, Biochemical Society symposium.

[24]  P. Bénit,et al.  Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome , 2004, Journal of Medical Genetics.

[25]  P. Bénit,et al.  Mutant NDUFV2 subunit of mitochondrial complex I causes early onset hypertrophic cardiomyopathy and encephalopathy , 2003, Human mutation.

[26]  Robin A. J. Smith,et al.  Superoxide Activates Mitochondrial Uncoupling Protein 2 from the Matrix Side , 2002, The Journal of Biological Chemistry.

[27]  Hui Zhang,et al.  Oxidative stress increases internal calcium stores and reduces a key mitochondrial enzyme. , 2002, Biochimica et biophysica acta.

[28]  P. Bénit,et al.  Large-scale deletion and point mutations of the nuclear NDUFV1 and NDUFS1 genes in mitochondrial complex I deficiency. , 2001, American journal of human genetics.

[29]  J. Smeitink,et al.  Human NADH:Ubiquinone Oxidoreductase , 2001, Journal of bioenergetics and biomembranes.

[30]  S. Dimauro,et al.  The genetics and pathology of oxidative phosphorylation , 2001, Nature Reviews Genetics.

[31]  P. Barth,et al.  Leigh syndrome associated with a mutation in the NDUFS7 (PSST) nuclear encoded subunit of complex I , 1999, Annals of neurology.

[32]  E. Mariman,et al.  Mutant NDUFV1 subunit of mitochondrial complex I causes leukodystrophy and myoclonic epilepsy , 1999, Nature Genetics.

[33]  B. Hamel,et al.  The first nuclear-encoded complex I mutation in a patient with Leigh syndrome. , 1998, American journal of human genetics.

[34]  S. Heales,et al.  Peroxynitrite and Brain Mitochondria: Evidence for Increased Proton Leak , 1998, Journal of neurochemistry.

[35]  E. Mariman,et al.  Demonstration of a new pathogenic mutation in human complex I deficiency: a 5-bp duplication in the nuclear gene encoding the 18-kD (AQDQ) subunit. , 1998, American journal of human genetics.

[36]  R Marsault,et al.  Transfected Aequorin in the Measurement of Cytosolic Ca2+ Concentration ([Ca2+]c) , 1995, The Journal of Biological Chemistry.

[37]  G L MADDOX,et al.  A critical evaluation , 2012 .