A hybrid stochastic Galerkin method for uncertainty quantification applied to a conservation law modelling a clarifier‐thickener unit

The continuous sedimentation process in a clarifier‐thickener can be described by a scalar nonlinear conservation law for the local solids volume fraction. The flux density function is discontinuous with respect to spatial position due to feed and discharge mechanisms. Typically, the feed flow cannot be given deterministically and efficient numerical simulation requires a concept for quantifying uncertainty. In this paper uncertainty quantification is expressed by a new hybrid stochastic Galerkin (HSG) method that extends the classical polynomial chaos approximation by multiresolution discretization in the stochastic space. The new approach leads to a deterministic hyperbolic system for a finite number of stochastic moments which is however partially decoupled and thus allows efficient parallelisation. The complexity of the problem is further reduced by stochastic adaptivity. For the approximate solution of the resulting high‐dimensional system a finite volume scheme is introduced. Numerical experiments cover one‐ and two‐dimensional situations.

[1]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[2]  G. J. Kynch A theory of sedimentation , 1952 .

[3]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[4]  S. Osher,et al.  One-sided difference approximations for nonlinear conservation laws , 1981 .

[5]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[6]  B. Alpert Wavelets and other bases for fast numerical linear algebra , 1993 .

[7]  B. Alpert A class of bases in L 2 for the sparse representations of integral operators , 1993 .

[8]  J. Ph. Chancelier,et al.  Analysis of a Conservation PDE With Discontinuous Flux: A Model of Settler , 1994, SIAM J. Appl. Math..

[9]  Aslak Tveito,et al.  The Solution of Nonstrictly Hyperbolic Conservation Laws May Be Hard to Compute , 1995, SIAM J. Sci. Comput..

[10]  Stefan Diehl,et al.  Scalar conservation laws with discontinuous flux function: I. The viscous profile condition , 1996 .

[11]  Stefan Diehl,et al.  A conservation Law with Point Source and Discontinuous Flux Function Modelling Continuous Sedimentation , 1996, SIAM J. Appl. Math..

[12]  Raimund Bürger,et al.  Model equations for gravitational sedimentation-consolidation processes , 2000 .

[13]  Stefan Diehl,et al.  Operating charts for continuous sedimentation I: Control of steady states , 2001 .

[14]  Robert M. Kirby,et al.  Parallel Scientific Computing in C++ and MPI , 2003 .

[15]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[16]  John D. Towers,et al.  Well-posedness in BVt and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units , 2004, Numerische Mathematik.

[17]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[18]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[19]  Alexander Kurganov,et al.  Central‐upwind schemes on triangular grids for hyperbolic systems of conservation laws , 2005 .

[20]  Stefan Diehl,et al.  Operating Charts for Continuous Sedimentation II: Step Responses , 2005 .

[21]  Raimund Bürger,et al.  A Model of Continuous Sedimentation of Flocculated Suspensions in Clarifier-Thickener Units , 2005, SIAM J. Appl. Math..

[22]  Stefan Diehl,et al.  Operating Charts for Continuous Sedimentation III: Control of Step Inputs , 2006 .

[23]  Kai Schneider,et al.  Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension , 2008, 0807.0400.

[24]  Stefan Diehl,et al.  Operating charts for continuous sedimentation IV: limitations for control of dynamic behaviour , 2008 .

[25]  H. Matthies Stochastic finite elements: Computational approaches to stochastic partial differential equations , 2008 .

[26]  Raimund Bürger,et al.  An Engquist-Osher-Type Scheme for Conservation Laws with Discontinuous Flux Adapted to Flux Connections , 2009, SIAM J. Numer. Anal..

[27]  Bruno Després,et al.  Uncertainty quantification for systems of conservation laws , 2009, J. Comput. Phys..

[28]  Kai Schneider,et al.  Adaptive Multiresolution Methods for the Simulation of Waves in Excitable Media , 2010, J. Sci. Comput..

[29]  Alexandre Ern,et al.  Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems , 2010, J. Comput. Phys..

[30]  Raimund Bürger,et al.  Second-order schemes for conservation laws with discontinuous flux modelling clarifier–thickener units , 2010, Numerische Mathematik.

[31]  M. Ratto,et al.  Sensitivity and uncertainty quantification techniques applied to systems of conservation laws , 2010 .

[32]  Raimund Bürger,et al.  Uncertainty Quantification for a Clarifier–Thickener Model with Random Feed , 2011 .

[33]  Siddhartha Mishra,et al.  Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..

[34]  Alexandre Ern,et al.  Adaptive Anisotropic Spectral Stochastic Methods for Uncertain Scalar Conservation Laws , 2012, SIAM J. Sci. Comput..

[35]  Kai Schneider,et al.  A MULTIRESOLUTION METHOD FOR THE SIMULATION OF SEDIMENTATION IN INCLINED CHANNELS , 2012 .

[36]  Raimund Bürger,et al.  A Stabilized Finite Volume Element Formulation for Sedimentation-Consolidation Processes , 2012, SIAM J. Sci. Comput..