An introduction to planar random tessellation models

Abstract The goal of this paper is to give an overview of random tessellation models. We discuss the classic isotropic Poisson line tessellation in some detail and then move on to more complicated models, including Arak–Clifford–Surgailis polygonal Markov fields and their Gibbs field counterparts, crystal growth models such as the Poisson–Voronoi, Johnson–Mehl and Laguerre random tessellations, and the STIT nesting scheme. An extensive list of references is included as a guide to the literature.

[1]  R. E. Miles RANDOM POLYGONS DETERMINED BY RANDOM LINES IN A PLANE, II. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Agnès Voisard,et al.  Spatial Databases: With Application to GIS , 2001 .

[3]  Random dynamics and thermodynamic limits for polygonal Markov fields in the plane , 2005, Advances in Applied Probability.

[4]  Sebastian Thrun,et al.  Robotic Mapping with Polygonal Random Fields , 2005, UAI.

[5]  L. Meijering,et al.  INTERFACE AREA, EDGE LENGTH, AND NUMBER OF VERTICES IN CRYSTAL AGGREGATES WITH RANDOM NUCLEATION , 2014 .

[6]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[7]  J. Møller Random tessellations in ℝ d , 1989, Advances in Applied Probability.

[8]  Sergei Zuyev,et al.  Random Laguerre tessellations , 2008, Advances in Applied Probability.

[9]  R. E. Miles On the homogeneous planar Poisson point process , 1970 .

[10]  Peter Cliiord,et al.  A Metropolis Sampler for Polygonal Image ReconstructionPeter , 1995 .

[11]  E Miles Roger,et al.  A Large Class of Random Tessellations with the Classic Poisson Polygon Distributions , 2002 .

[12]  J. Møller,et al.  Lectures on Random Voronoi Tessellations , 1994 .

[13]  A. H. Thiessen PRECIPITATION AVERAGES FOR LARGE AREAS , 1911 .

[14]  D. Surgailis,et al.  Markov fields with polygonal realizations , 1989 .

[15]  W. Kendall,et al.  New Perspectives in Stochastic Geometry , 2010 .

[16]  V. Schmidt,et al.  Stationary iterated tessellations , 2003, Advances in Applied Probability.

[17]  T. Schreiber Non-homogeneous Polygonal Markov Fields in the Plane: Graphical Representations and Geometry of Higher Order Correlations , 2008, 0802.2115.

[18]  M. Lieshout,et al.  Image segmentation by polygonal Markov Fields , 2004 .

[19]  J. Mecke,et al.  Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen , 1967 .

[20]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[21]  W. Weil,et al.  Stochastic and Integral Geometry , 2008 .

[22]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[23]  J. Heikkinen,et al.  Non‐parametric Bayesian Estimation of a Spatial Poisson Intensity , 1998 .

[24]  Todd D. Ringler,et al.  Voronoi Tessellations and Their Application to Climate and Global Modeling , 2011 .

[25]  Peter Clifford,et al.  Reconstruction of polygonal images , 1989 .

[26]  T. Schreiber,et al.  Typical Geometry, Second-Order Properties and Central Limit Theory for Iteration Stable Tessellations , 2010, 1001.0990.

[27]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[28]  W. Nagel,et al.  Limits of sequences of stationary planar tessellations , 2003, Advances in Applied Probability.

[29]  P. Clifford,et al.  Point-based polygonal models for random graphs , 1993, Advances in Applied Probability.

[30]  T. Schreiber,et al.  Disagreement Loop and Path Creation/Annihilation Algorithms for Binary Planar Markov Fields with Applications to Image Segmentation , 2007 .

[31]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[32]  W. Nagel,et al.  Crack STIT tessellations: characterization of stationary random tessellations stable with respect to iteration , 2005, Advances in Applied Probability.

[33]  Marie-Colette van Lieshout,et al.  An Algorithm for Binary Image Segmentation Using Polygonal Markov Fields , 2005, ICIAP.

[34]  H. Poincaré Calcul des Probabilités , 1912 .

[35]  Geoff K. Nicholls,et al.  Bayesian image analysis with Markov chain Monte Carlo and coloured continuum triangulation models , 1998 .

[36]  Øivind Skare,et al.  Coloured Voronoi tessellations for Bayesian image analysis and reservoir modelling , 2001 .