Rate Allocation and Adaptation for Incremental Redundancy Truncated HARQ

This paper considers incremental redundancy hybrid ARQ (HARQ) transmission over independent block-fading channels. The transmitter, having no knowledge of the instantaneous channel state information (CSI) can or - allocate the transmission rate knowing the statistics of the channel, or - adapt the transmissions rates using the outdated CSI, i.e., the one experienced by the receiver in the past transmissions that resulted in a packet decoding failure. Aiming at throughput maximization problems under constraint on the outage probability, we show how to optimize the rate-adaptation and rate-allocation policies using dynamic programming framework. Numerical examples obtained in a Rayleigh-fading channel show that rate adaptation provides notable gains over a rate allocation and non-adaptive HARQ, and, for high SNR, only a few transmissions are necessary to approach closely the ergodic capacity.

[1]  Michele Zorzi,et al.  On the use of renewal theory in the analysis of ARQ protocols , 1996, IEEE Trans. Commun..

[2]  Nihar Jindal,et al.  Performance of hybrid-ARQ in block-fading channels: A fixed outage probability analysis , 2010, IEEE Transactions on Communications.

[3]  Xin Wang,et al.  Analyzing and Optimizing Adaptive Modulation Coding Jointly With ARQ for QoS-Guaranteed Traffic , 2006, IEEE Transactions on Vehicular Technology.

[4]  Wan Choi,et al.  Optimal Rate Adaptation for Hybrid ARQ in Time-Correlated Rayleigh Fading Channels , 2011, IEEE Transactions on Wireless Communications.

[5]  Georgios B. Giannakis,et al.  Cross-Layer combining of adaptive Modulation and coding with truncated ARQ over wireless links , 2004, IEEE Transactions on Wireless Communications.

[6]  Andrea J. Goldsmith,et al.  Variable-rate variable-power MQAM for fading channels , 1997, IEEE Trans. Commun..

[7]  Michael L. Honig,et al.  Optimum ARQ design: a dynamic programming approach , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[8]  Mikael Skoglund,et al.  On the Expected Rate of Slowly Fading Channels With Quantized Side Information , 2007, IEEE Transactions on Communications.

[9]  Mohamed-Slim Alouini,et al.  Rate and Power Allocation for Discrete-Rate Link Adaptation , 2007, EURASIP J. Wirel. Commun. Netw..

[10]  Nariman Farvardin,et al.  Optimizing the transmit power for slow fading channels , 2000, IEEE Trans. Inf. Theory.

[11]  Pravin Varaiya,et al.  Capacity of fading channels with channel side information , 1997, IEEE Trans. Inf. Theory.

[12]  Moshiur Rahman,et al.  Adaptive Incremental Redundancy for HARQ Transmission with Outdated CSI , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[13]  Giuseppe Caire,et al.  The throughput of hybrid-ARQ protocols for the Gaussian collision channel , 2001, IEEE Trans. Inf. Theory.

[14]  Vijay K. Bhargava,et al.  Joint Rate and Power Adaptation for Type-I Hybrid ARQ Systems Over Correlated Fading Channels Under Different Buffer-Cost Constraints , 2008, IEEE Transactions on Vehicular Technology.

[15]  Harry Leib,et al.  Coded Diversity on Block-Fading Channels , 1999, IEEE Trans. Inf. Theory.

[16]  N. Gopalakrishnan,et al.  Rate Selection Algorithms for IR Hybrid ARQ , 2008, 2008 IEEE Sarnoff Symposium.

[17]  Lars K. Rasmussen,et al.  MIMO ARQ With Multibit Feedback: Outage Analysis , 2010, IEEE Transactions on Information Theory.

[18]  Erik G. Larsson,et al.  Outage-Optimal Power Allocation for Hybrid ARQ with Incremental Redundancy , 2011, IEEE Transactions on Wireless Communications.

[19]  John M. Cioffi,et al.  Delay-constrained capacity with causal feedback , 2002, IEEE Trans. Inf. Theory.

[20]  Saul B. Gelfand,et al.  Achievable rates and rate selection algorithms for incremental redundancy (ir) hybrid arq (harq) wireless systems , 2008 .

[21]  Daniela Tuninetti,et al.  Transmitter channel state information and repetition protocols in block fading channels , 2007, 2007 IEEE Information Theory Workshop.

[22]  N. Gopalakrishnan,et al.  Achievable Rates for Adaptive IR Hybrid ARQ , 2008, 2008 IEEE Sarnoff Symposium.

[23]  Daniela Tuninetti,et al.  On the Benefits of Partial Channel State Information for Repetition Protocols in Block Fading Channels , 2011, IEEE Transactions on Information Theory.

[24]  Michael L. Honig,et al.  Reliability-based incremental redundancy with convolutional codes , 2005, IEEE Transactions on Communications.

[25]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[26]  Leszek Szczecinski,et al.  Variable-Rate Transmission for Incremental Redundancy Hybrid ARQ , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[27]  Emina Soljanin,et al.  On the role of puncturing in hybrid ARQ schemes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[28]  Stephan Pfletschinger,et al.  Adaptive HARQ for imperfect channel knowledge , 2010, 2010 International ITG Conference on Source and Channel Coding (SCC).

[29]  Lars K. Rasmussen,et al.  Optimal Incremental-redundancy strategy for type-II hybrid ARQ , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[30]  Stefan Parkvall,et al.  Adaptive Incremental Redundancy , 2003 .