Cavitation in liquid metals under negative pressures. Molecular dynamics modeling and simulation

An approach to study cavitation in stretched liquids via molecular dynamics (MD) simulation is presented. It is based on the stochastic properties of MD and allows one to study cavitation as a stochastic phenomenon. The approach is used to study equation of state and stability limits of the metastable liquid phase, cavitation kinetics and dynamics properties for different temperatures. Particular examples of metals under consideration include Pb, Li and Pb(83)Li(17). Quantitative and qualitative disagreements between the classic nucleation theory estimates and the MD results are found. The Kolmogorov-Johnson-Mehl-Avrami equation is used as an alternative way to estimate cavitation rate. The two methods show good mutual agreement. Decay at a constant stretching rate is also considered.

[1]  Baidakov Vg,et al.  Singular point of a system of Lennard-Jones particles at negative pressures. , 2005 .

[2]  Kenichi Miyamoto,et al.  Molecular Dynamics Simulation of a Collapsing Bubble , 2000 .

[3]  A. A. Bogach,et al.  Impulsive Tension of Hexane and Glycerol under Shock‐Wave Loading , 2003 .

[4]  D. Belashchenko Diffusion mechanisms in disordered systems: computer simulation , 1999 .

[5]  M. Matsumoto,et al.  Cavitation processes and negative pressure , 1998 .

[6]  Z. Insepov,et al.  Molecular dynamics simulation of Li surface erosion and bubble formation , 2005 .

[7]  J. Frankel Kinetic theory of liquids , 1946 .

[8]  S. A. Medin,et al.  Power plant conceptual design for fast ignition heavy-ion fusion , 2005 .

[9]  Max Volmer,et al.  Kinetik der Phasenbildung , 1939 .

[10]  A. Kuksin,et al.  Kinetic model of fracture at high strain rates in the example of crystalline aluminum , 2007 .

[11]  V. Stegailov,et al.  The phase diagram and spinodal decomposition of metastable states of Lennard-Jones system , 2007 .

[12]  Donald J. Siegel,et al.  DEVELOPMENT OF GLUE-TYPE POTENTIALS FOR THE Al-Pb SYSTEM: PHASE DIAGRAM CALCULATION , 2000 .

[13]  I. V. Morozov,et al.  Standards for molecular dynamics modelling and simulation of relaxation , 2005 .

[14]  Homogeneous nucleation in a superheated crystal. Molecular-dynamic simulation , 2002 .

[15]  V. Stegailov,et al.  Stochastic and dynamic properties of molecular dynamics systems: Simple liquids, plasma and electrolytes, polymers , 2002 .

[16]  V. Stegailov,et al.  Molecular dynamics simulation of cavitation in a lead melt at negative pressures , 2006 .

[17]  H. Egger,et al.  Short‐range order in liquid Li–Pb alloys , 1975 .

[18]  Yu. B. Grunin,et al.  Pulsed NMR method for determining the thermodynamic characteristics of adsorption processes in biopolymers , 2007 .

[19]  V. Stegailov,et al.  Cavitation and the stability region of liquid lead at negative pressures: Molecular dynamics study , 2005 .

[20]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[21]  V. Baidakov,et al.  Spinodal and the melting curve of a Lennard-Jones crystal at negative pressure , 2005 .

[22]  A. M. Kudin,et al.  Experimental corroboration of the synthesis of diamond in the cavitation process , 2004 .

[23]  V. Stegailov,et al.  Simulation of Ideal Crystal Superheating and Decay , 2004 .

[24]  S. G. Srinivasan,et al.  On the Lennard–Jones EAM potential , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  Joseph Katz,et al.  Bubble nucleation in liquids , 1975 .

[26]  The onset of a liquid–vapour transition in metallic nanoparticles , 1997, cond-mat/9710034.

[27]  Neil L. Allan,et al.  Shock Compression of Condensed Matter-2001 , 2002 .

[28]  Thomas P. Russell,et al.  Shock Compression of Condensed Matter , 2006 .

[29]  C. Ong,et al.  Stability of face-centered cubic and icosahedral lead clusters , 1992 .

[30]  Genri E. Norman,et al.  Cavitation in liquid Pb and Li under negative pressures , 2007, Comput. Phys. Commun..

[31]  V. Fortov,et al.  Physics of nonideal plasma , 1989 .

[32]  V. Skripov,et al.  Crystal-Liquid-Gas Phase Transitions and Thermodynamic Similarity , 2006 .

[33]  V. Stegailov,et al.  The stochastic properties of a molecular-dynamical Lennard-Jones system in equilibrium and nonequilibrium states , 2001 .

[34]  Dennis E. Grady,et al.  The spall strength of condensed matter , 1988 .

[35]  J. Schmelzer,et al.  Curvature-Dependent Surface Tension and Nucleation Theory , 1996 .

[36]  Pablo G. Debenedetti,et al.  Metastable Liquids: Concepts and Principles , 1996 .

[37]  H. S. Green,et al.  A Kinetic Theory of Liquids , 1947, Nature.

[38]  Estela Blaisten-Barojas,et al.  STRUCTURE AND DYNAMICS OF ALKALI-METAL CLUSTERS AND FISSION OF HIGHLY CHARGED CLUSTERS , 1998 .

[39]  V. Baidakov,et al.  Metastable States in Liquid–Gas Phase Transition. Simulation by the Method of Molecular Dynamics , 2003 .

[40]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .

[41]  R. Lahey,et al.  Evidence for Nuclear Emissions During Acoustic Cavitation , 2002, Science.