New Constructions of Asymptotically Optimal Codebooks With Multiplicative Characters

In practical applications, such as direct spread code division multiple access communications, space-time codes and compressed sensing, and codebooks with small inner-product correlation are required. It is extremely difficult to construct codebooks achieving the Levenshtein bound. In this paper, two new constructions of infinitely many codebooks with multiplicative characters of finite fields are presented. These constructions produce complex codebooks asymptotically achieving the Levenshtein bound and codebooks asymptotically achieving the Welch bound. The codebooks presented in this paper have new parameters.

[1]  Jinsong Wu,et al.  New Constructions of Codebooks Nearly Meeting the Welch Bound With Equality , 2014, IEEE Transactions on Information Theory.

[2]  Zhengchun Zhou,et al.  A Construction of Codebooks Nearly Achieving the Levenstein Bound , 2016, IEEE Signal Processing Letters.

[3]  Il-Min Kim,et al.  Existence and construction of noncoherent unitary space-time codes , 2002, IEEE Trans. Inf. Theory.

[4]  Chengju Li,et al.  Two families of nearly optimal codebooks , 2015, Des. Codes Cryptogr..

[5]  A. Calderbank,et al.  Z4‐Kerdock Codes, Orthogonal Spreads, and Extremal Euclidean Line‐Sets , 1997 .

[6]  Gennian Ge,et al.  Deterministic Sensing Matrices Arising From Near Orthogonal Systems , 2014, IEEE Transactions on Information Theory.

[7]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[8]  Cunsheng Ding,et al.  Signal Sets From Functions With Optimum Nonlinearity , 2007, IEEE Transactions on Communications.

[9]  Keqin Feng,et al.  Two Classes of Codebooks Nearly Meeting the Welch Bound , 2012, IEEE Transactions on Information Theory.

[10]  Dustin G. Mixon,et al.  Tables of the existence of equiangular tight frames , 2015, ArXiv.

[11]  Dustin G. Mixon,et al.  Steiner equiangular tight frames , 2010, 1009.5730.

[12]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[13]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[14]  Cunsheng Ding,et al.  New Families of Codebooks Achieving the Levenstein Bound , 2014, IEEE Transactions on Information Theory.

[15]  Fahimeh Rahimi Covering Graphs and Equiangular Tight Frames , 2016 .

[16]  Aggelos K. Katsaggelos,et al.  Construction of Incoherent Unit Norm Tight Frames With Application to Compressed Sensing , 2014, IEEE Transactions on Information Theory.

[17]  Cunsheng Ding,et al.  Complex Codebooks From Combinatorial Designs , 2006, IEEE Transactions on Information Theory.

[18]  Dilip V. Sarwate Meeting the Welch Bound with Equality , 1998, SETA.

[19]  Robert W. Heath,et al.  Grassmannian beamforming for multiple-input multiple-output wireless systems , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[20]  Elza Erkip,et al.  On beamforming with finite rate feedback in multiple-antenna systems , 2003, IEEE Trans. Inf. Theory.

[21]  Cunsheng Ding,et al.  Codebooks from almost difference sets , 2008, Des. Codes Cryptogr..

[22]  W. Marsden I and J , 2012 .

[23]  Dustin G. Mixon,et al.  Tremain equiangular tight frames , 2016, J. Comb. Theory, Ser. A.

[24]  Nam Yul Yu,et al.  A Construction of Codebooks Associated With Binary Sequences , 2012, IEEE Transactions on Information Theory.

[25]  Thomas Strohmer,et al.  GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.

[26]  Thomas L. Marzetta,et al.  Systematic design of unitary space-time constellations , 2000, IEEE Trans. Inf. Theory.

[27]  Rudolf Lide,et al.  Finite fields , 1983 .

[28]  Cunsheng Ding,et al.  Optimal Codebooks From Binary Codes Meeting the Levenshtein Bound , 2015, IEEE Transactions on Information Theory.

[29]  N. J. A. Sloane,et al.  Packing Lines, Planes, etc.: Packings in Grassmannian Spaces , 1996, Exp. Math..

[30]  Georgios B. Giannakis,et al.  Achieving the Welch bound with difference sets , 2005, IEEE Transactions on Information Theory.

[31]  Dustin G. Mixon,et al.  Equiangular Tight Frames From Hyperovals , 2016, IEEE Transactions on Information Theory.

[32]  Zhengchun Zhou,et al.  New nearly optimal codebooks from relative difference sets , 2011, Adv. Math. Commun..

[33]  Qin Yue,et al.  Optimal codebooks achieving the Levenshtein bound from generalized bent functions over ℤ4$\mathbb {Z}_{4}$ , 2016, Cryptography and Communications.

[34]  Cunsheng Ding,et al.  A Generic Construction of Complex Codebooks Meeting the Welch Bound , 2007, IEEE Transactions on Information Theory.

[35]  J. Massey,et al.  Welch’s Bound and Sequence Sets for Code-Division Multiple-Access Systems , 1993 .