Variational problems with fractional derivatives: Euler–Lagrange equations

We generalize the fractional variational problem by allowing the possibility that the lower bound in the fractional derivative does not coincide with the lower bound of the integral that is minimized. Also, for the standard case when these two bounds coincide, we derive a new form of Euler–Lagrange equations. We use approximations for fractional derivatives in the Lagrangian and obtain the Euler–Lagrange equations which approximate the initial Euler–Lagrange equations in a weak sense.

[1]  G. Jumarie Fractionalization of the complex-valued Brownian motion of order n using Riemann-Liouville derivative. Applications to mathematical finance and stochastic mechanics , 2006 .

[2]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[3]  D.Baleanu,et al.  Lagrangians with linear velocities within Riemann-Liouville fractional derivatives , 2004 .

[4]  Delfim F. M. Torres,et al.  A formulation of Noether's theorem for fractional problems of the calculus of variations , 2007 .

[5]  S. Brendle,et al.  Calculus of Variations , 1927, Nature.

[6]  Om P. Agrawal,et al.  Fractional variational calculus in terms of Riesz fractional derivatives , 2007 .

[7]  Simple strong glass forming models: mean-field solution with activation , 2002, cond-mat/0209362.

[8]  Ruggero Maria Santilli,et al.  Foundations of Theoretical Mechanics I , 1978 .

[9]  Aytac Arikoglu,et al.  Comments on “Application of generalized differential transform method to multi-order fractional differential equations”, Vedat Suat Erturk, Shaher Momani, Zaid Odibat [Commun Nonlinear Sci Numer Simul 2008;13:1642 54] , 2008 .

[10]  G. Jumarie,et al.  Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results , 2006, Comput. Math. Appl..

[11]  Guy Jumarie,et al.  A PRACTICAL VARIATIONAL APPROACH TO STOCHASTIC OPTIMAL CONTROL VIA STATE MOMENT EQUATIONS , 1995 .

[12]  S. Momani,et al.  Numerical comparison of methods for solving linear differential equations of fractional order , 2007 .

[13]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Dumitru Baleanu,et al.  The Hamilton formalism with fractional derivatives , 2007 .

[15]  Om P. Agrawal,et al.  Fractional variational calculus and the transversality conditions , 2006 .

[16]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[17]  R. Gorenflo,et al.  Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.

[18]  Frederick E. Riewe,et al.  Mechanics with fractional derivatives , 1997 .

[19]  Teodor M. Atanackovic,et al.  On a class of differential equations with left and right fractional derivatives , 2007 .

[20]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[21]  Dumitru Baleanu,et al.  Fractional Hamiltonian analysis of irregular systems , 2006, Signal Process..

[22]  Stevan Pilipović,et al.  On a nonlinear distributed order fractional differential equation , 2007 .

[23]  J. March Introduction to the Calculus of Variations , 1999 .

[24]  Guy Jumarie,et al.  Lagrangian mechanics of fractional order, Hamilton–Jacobi fractional PDE and Taylor’s series of nondifferentiable functions , 2007 .

[25]  A Gaies,et al.  Fractional Variational Principle in Macroscopic Picture , 2004 .

[26]  Malgorzata Klimek,et al.  Fractional sequential mechanics — models with symmetric fractional derivative , 2001 .

[27]  G. Jumarie Stochastic differential equations with fractional Brownian motion input , 1993 .

[28]  D. Baleanu,et al.  Hamiltonian formulation of classical fields within Riemann–Liouville fractional derivatives , 2005, math-ph/0510030.

[29]  S. Momani,et al.  Application of Variational Iteration Method to Nonlinear Differential Equations of Fractional Order , 2006 .

[30]  Extending Bauer's corollary to fractional derivatives , 2003, physics/0312085.

[31]  Dumitru Baleanu,et al.  Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives , 2005 .

[32]  K. A. Lazopoulos Non-local continuum mechanics and fractional calculus , 2006 .

[33]  Peter M. Young,et al.  Nonconservative Lagrangian mechanics: a generalized function approach , 2003, physics/0306142.