Object location using path separators

We study a novel separator property called <i>k-path separable</i>. Roughly speaking, a <i>k-path separable</i> graph can be recursively separated into smaller components by sequentially removing <i>k</i> shortest paths. Our main result is that every minor free weighted graph is <i>k</i>-path separable. We then show that <i>k</i>-path separable graphs can be used to solve several object location problems: (1) a small-worldization with an average poly-logarithmic number of hops; (2) an (1 + ε)-approximate distance labeling scheme with <i>O</i>(log <i>n</i>) space labels; (3) a stretch-(1 + ε) compact routing scheme with tables of poly-logarithmic space; (4) an (1 + ε)-approximate distance oracle with <i>O</i>(<i>n</i> log <i>n</i>) space and <i>O</i>(log <i>n</i>) query time. Our results generalizes to much wider classes of weighted graphs, namely to bounded-dimension isometric sparable graphs.

[1]  Ambrose Kofi Laing Brief announcement: name-independent compact routing in trees , 2004, PODC '04.

[2]  Paola Flocchini,et al.  Routing in Series Parallel Networks , 2003, Theory of Computing Systems.

[3]  Pierre Fraigniaud,et al.  Routing in Trees , 2001, ICALP.

[4]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[5]  Aleksandrs Slivkins Distance estimation and object location via rings of neighbors , 2006, Distributed Computing.

[6]  Andrew Thomason,et al.  The Extremal Function for Complete Minors , 2001, J. Comb. Theory B.

[7]  Ittai Abraham,et al.  Compact Routing for Graphs Excluding a Fixed Minor , 2005, DISC.

[8]  Greg N. Frederickson,et al.  Designing networks with compact routing tables , 1988, Algorithmica.

[9]  Ittai Abraham,et al.  On Space-Stretch Trade-Offs for Compact Routing Schemes , 2005 .

[10]  Bruce M. Maggs,et al.  On hierarchical routing in doubling metrics , 2005, SODA '05.

[11]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[12]  Cyril Gavoille,et al.  Space-Efficiency for Routing Schemes of Stretch Factor Three , 2001, J. Parallel Distributed Comput..

[13]  Kunal Talwar,et al.  Bypassing the embedding: algorithms for low dimensional metrics , 2004, STOC '04.

[14]  Jon M. Kleinberg,et al.  The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.

[15]  Aleksandrs Slivkins Distance estimation and object location via rings of neighbors , 2005, PODC '05.

[16]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[17]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[18]  Ittai Abraham,et al.  On space-stretch trade-offs: lower bounds , 2006, SPAA '06.

[19]  Greg N. Frederickson,et al.  Efficient Message Routing in Planar Networks , 1989, SIAM J. Comput..

[20]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[21]  Pierre Fraigniaud,et al.  A doubling dimension threshold Θ(log log n) for augmented graph navigability , 2006 .

[22]  Erik D. Demaine,et al.  Graphs excluding a fixed minor have grids as large as treewidth, with combinatorial and algorithmic applications through bidimensionality , 2005, SODA '05.

[23]  John R Gilbert,et al.  A Separator Theorem for Graphs of Bounded Genus , 1984, J. Algorithms.

[24]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[25]  P. Fraigniaud A New Perspective on the Small-World Phenomenon: Greedy Routing in Tree-Decomposed Graphs , 2005 .

[26]  Martin Grohe Local Tree-Width, Excluded Minors, and Approximation Algorithms , 2003, Comb..

[27]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.

[28]  James R. Lee,et al.  Improved approximation algorithms for minimum-weight vertex separators , 2005, STOC '05.

[29]  Mikkel Thorup Compact oracles for reachability and approximate distances in planar digraphs , 2004, JACM.

[30]  Pierre Fraigniaud,et al.  A Doubling Dimension Threshold Theta(loglogn) for Augmented Graph Navigability , 2006, ESA.

[31]  Robin Thomas,et al.  Excluding a Countable Clique , 1999, J. Comb. Theory, Ser. B.

[32]  Andrew V. Goldberg,et al.  Routing in Networks with Low Doubling Dimension , 2006, 26th IEEE International Conference on Distributed Computing Systems (ICDCS'06).

[33]  D DemaineErik,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005 .

[34]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[35]  Paul D. Seymour,et al.  Graph Minors. XVI. Excluding a non-planar graph , 2003, J. Comb. Theory, Ser. B.

[36]  Baruch Awerbuch,et al.  Sparse partitions , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[37]  Robin Thomas,et al.  A separator theorem for graphs with an excluded minor and its applications , 1990, STOC '90.

[38]  Ran Raz,et al.  Distance labeling in graphs , 2001, SODA '01.

[39]  Rolf Niedermeier,et al.  Graph Separators: A Parameterized View , 2001, COCOON.

[40]  Robin Thomas,et al.  Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.

[41]  Robin Thomas,et al.  Planar Separators , 1994, SIAM J. Discret. Math..

[42]  Hristo Djidjev,et al.  Reduced constants for simple cycle graph separation , 1997, Acta Informatica.

[43]  Satish Rao,et al.  Shallow excluded minors and improved graph decompositions , 1994, SODA '94.

[44]  Pierre Fraigniaud,et al.  Greedy Routing in Tree-Decomposed Graphs , 2005, ESA.

[45]  Bin Fu,et al.  Theory and Application of Width Bounded Geometric Separator , 2006, STACS.

[46]  Baruch Awerbuch,et al.  Routing with Polynomial Communication-Space Trade-Off , 1992, SIAM J. Discret. Math..