Maximum matching in graphs with an excluded minor

We present a new randomized algorithm for finding a maximum matching in <i>H-minor free</i> graphs. For every fixed <i>H</i>, our algorithm runs in <i>O</i>(<i>n</i><sup>3ω/(ω+3)</sup>) < <i>O</i>(<i>n</i><sup>1.326</sup>) time, where <i>n</i> is the number of vertices of the input graph and ω < 2.376 is the exponent of matrix multiplication. This improves upon the previous <i>O</i>(<i>n</i><sup>1.5</sup>) time bound obtained by applying the <i>O</i>(<i>mn</i><sup>1/2</sup>)-time algorithm of Micali and Vazirani on this important class of graphs. For graphs with <i>bounded genus</i>, which are special cases of <i>H</i>-minor free graphs, we present a randomized algorithm for finding a maximum matching in <i>O</i>(<i>n</i><sup>ω/2</sup>) < <i>O</i>(<i>n</i><sup>1.19</sup>) time. This extends a previous randomized algorithm of Mucha and Sankowski, having the same running time, that finds a maximum matching in a <i>planar</i> graphs. We also present a deterministic algorithm with a running time of <i>O</i>(<i>n</i><sup>1+ω/2</sup>) < <i>O</i>(<i>n</i><sup>2.19</sup>) for <i>counting</i> the number of <i>perfect</i> matchings in graphs with bounded genus. This algorithm combines the techniques used by the algorithms above with the counting technique of Kasteleyn. Using this algorithm we can also count, within the same running time, the number of <i>T-joins</i> in planar graphs. As special cases, we get algorithms for counting Eulerian subgraphs (<i>T</i> = &phis;) and odd subgraphs (<i>T = V</i>) of planar graphs.

[1]  Vijay V. Vazirani,et al.  NC Algorithms for Computing the Number of Perfect Matchings in K3, 3-free Graphs and Related Problems , 1988, SWAT.

[2]  Piotr Sankowski,et al.  Maximum matchings in planar graphs via gaussian elimination , 2004, Algorithmica.

[3]  Robin Thomas,et al.  PERMANENTS, PFAFFIAN ORIENTATIONS, AND EVEN DIRECTED CIRCUITS , 1997, STOC 1997.

[4]  Robert E. Tarjan,et al.  Faster scaling algorithms for general graph matching problems , 1991, JACM.

[5]  Bojan Mohar,et al.  A Linear Time Algorithm for Embedding Graphs in an Arbitrary Surface , 1999, SIAM J. Discret. Math..

[6]  D. Rose,et al.  Generalized nested dissection , 1977 .

[7]  K. Wagner,et al.  Graph Minor Theory , 2005 .

[8]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[9]  Martin Loebl,et al.  On the Theory of Pfaffian Orientations. II. T-joins, k-cuts, and Duality of Enumeration , 1998, Electron. J. Comb..

[10]  N. Alon,et al.  A separator theorem for nonplanar graphs , 1990 .

[11]  John R Gilbert,et al.  A Separator Theorem for Graphs of Bounded Genus , 1984, J. Algorithms.

[12]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[13]  C. Kuratowski Sur le problème des courbes gauches en Topologie , 1930 .

[14]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[15]  Vijay V. Vazirani,et al.  A theory of alternating paths and blossoms for proving correctness of the $$O(\sqrt V E)$$ general graph maximum matching algorithm , 1990, Comb..

[16]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[17]  David Bruce Wilson,et al.  Determinant algorithms for random planar structures , 1997, SODA '97.

[18]  R. Tarjan,et al.  The analysis of a nested dissection algorithm , 1987 .

[19]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[20]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[21]  László Lovász,et al.  On determinants, matchings, and random algorithms , 1979, FCT.

[22]  Carsten Thomassen,et al.  Kuratowski's theorem , 1981, J. Graph Theory.

[23]  Norbert Blum,et al.  A New Approach to Maximum Matching in General Graphs , 1990, ICALP.

[24]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[25]  B. Reed,et al.  Fast separation in a graph with an excluded minor , 2004 .

[26]  Paul D. Seymour,et al.  Graph minors. VIII. A kuratowski theorem for general surfaces , 1990, J. Comb. Theory, Ser. B.

[27]  Norishige Chiba,et al.  A Linear Algorithm for Embedding Planar Graphs Using PQ-Trees , 1985, J. Comput. Syst. Sci..

[28]  Piotr Sankowski,et al.  Maximum matchings via Gaussian elimination , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[29]  Vijay V. Vazirani,et al.  NC Algorithms for Computing the Number of Perfect Matchings in K_3,3-Free Graphs and Related Problems , 1989, Inf. Comput..

[30]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[31]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[32]  William McCuaig,et al.  Pólya's Permanent Problem , 2004, Electron. J. Comb..

[33]  Charles H. C. Little,et al.  An Extension of kasteleyn's method of enumerating the 1-factors of planar graphs , 1974 .

[34]  Martin Loebl,et al.  On the Theory of Pfaffian Orientations. I. Perfect Matchings and Permanents , 1998, Electron. J. Comb..

[35]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[36]  Shimon Even,et al.  An O (N2.5) algorithm for maximum matching in general graphs , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).