Bayesian Density Estimation and Inference Using

We describe and illustrate Bayesian inference in models for density estimation using mixtures of Dirichlet processes. These models provide natural settings for density estimation, and are exempliied by special cases where data are modelled as a sample from mixtures of normal distributions. EEcient simulation methods are used to approximate various prior, posterior and predictive distributions. This allows for direct inference on a variety of practical issues, including problems of local versus global smoothing, uncertainty about density estimates, assessment of modality, and the inference on the numbers of components. Also, convergence results are established for a general class of normal mixture models.

[1]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[2]  T. Ferguson BAYESIAN DENSITY ESTIMATION BY MIXTURES OF NORMAL DISTRIBUTIONS , 1983 .

[3]  J. Besag,et al.  Spatial Statistics and Bayesian Computation , 1993 .

[4]  M. West,et al.  Hyperparameter estimation in Dirichlet process mixture models , 1992 .

[5]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[6]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[7]  E. Nummelin General irreducible Markov chains and non-negative operators: List of symbols and notation , 1984 .

[8]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[9]  S. MacEachern Estimating normal means with a conjugate style dirichlet process prior , 1994 .

[10]  L. Kuo Computations of mixtures of dirichlet processes , 1986 .

[11]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[12]  M. Pierre,et al.  Probes for the large-scale structure , 1990 .

[13]  Michael Escobar,et al.  Nonparametric Bayesian methods in hierarchical models , 1995 .

[14]  M. Postman,et al.  Probes of large-scale structure in the Corona Borealis region. , 1986 .

[15]  M. Tanner,et al.  Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler , 1992 .

[16]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[17]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[18]  L. Tierney Exploring Posterior Distributions Using Markov Chains , 1992 .

[19]  K. Roeder Density estimation with confidence sets exemplified by superclusters and voids in the galaxies , 1990 .

[20]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[21]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[22]  B. Silverman,et al.  Using Kernel Density Estimates to Investigate Multimodality , 1981 .

[23]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[24]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[25]  M. Escobar Estimating Normal Means with a Dirichlet Process Prior , 1994 .

[26]  A. O'Hagan,et al.  The Calculation of Posterior Distributions by Data Augmentation: Comment , 1987 .

[27]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[28]  Michael A. West,et al.  Assessing Mechanisms of Neural Synaptic Activity , 1993 .