Thermal noise and material issues for gravitational wave detectors

Abstract Thermal noise forms an important limit to the sensitivity of km-scale interferometric detectors searching for gravitational waves from astrophysical sources. The importance of quantifying and reducing the thermal noise in the mirrors of these detectors has motivated considerable progress in recent years, both theoretically and experimentally, in understanding how thermal noise in mechanical systems appears when sensed optically. Here we present a summary of recent progress in the field and discuss some of our current work aimed at developing low noise suspensions for future gravitational wave detectors.

[1]  Y. S. Touloukian Thermophysical properties of matter , 1970 .

[2]  Martin M. Fejer,et al.  Experimental measurements of coating mechanical loss factors , 2004 .

[3]  Winkler,et al.  Heating by optical absorption and the performance of interferometric gravitational-wave detectors. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[4]  B. S. Berry,et al.  Anelastic Relaxation in Crystalline Solids , 1972 .

[5]  M. Fejer,et al.  Thermal noise in half-infinite mirrors with nonuniform loss: A slab of excess loss in a half-infinite mirror , 2001, gr-qc/0105046.

[6]  W. Eichenauer,et al.  Thermophysical Properties of Matter. Volume 4: Specific Heat, Metallic Elements and Alloys. Herausgeber: Y. S. Touloukian und C. Y. Ho, IFI/Plenum, New York‐Washington 1970. Vertrieb in Europa: Heyden & Son, Ltd., London. 830 Seiten, Preis: DM 260,–. , 1971 .

[7]  Scalar radiation emitted from a source rotating around a black hole , 1999, gr-qc/9901006.

[8]  H. Callen,et al.  Irreversibility and Generalized Noise , 1951 .

[9]  Experimental study of the thermal noise of mirrors with an inhomogeneous loss used in gravitational wave detectors , 2004 .

[10]  Peter R. Saulson,et al.  Very high quality factor measured in annealed fused silica , 2004 .

[11]  Flavio C. Cruz,et al.  VISIBLE LASERS WITH SUBHERTZ LINEWIDTHS , 1999 .

[12]  V. Braginsky,et al.  Energy dissipation in the pendulum mode of the test mass suspension of a gravitational wave antenna , 1996 .

[13]  Karsten Danzmann,et al.  LISA technology - concept, status, prospects , 2003 .

[14]  V. Braginsky,et al.  Systems with Small Dissipation , 1986 .

[15]  Peter R. Saulson Fundamentals of Interferometric Gravitational Wave Detectors , 1994 .

[16]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[17]  Kenji Numata,et al.  Wide-band direct measurement of thermal fluctuations in an interferometer. , 2003, Physical review letters.

[18]  M. Fejer,et al.  Investigation of mechanical loss factors of some candidate materials for the test masses of gravitational wave detectors , 2000 .

[19]  F. Bondu,et al.  Ultrahigh-spectral-purity laser for the VIRGO experiment. , 1996, Optics letters.

[20]  Joshua R. Smith,et al.  The status of GEO 600 , 2004, SPIE Astronomical Telescopes + Instrumentation.

[21]  Takayuki Tomaru,et al.  Mechanical loss of the reflective coating and fluorite at low temperature , 2004 .

[22]  V. Mitrofanov,et al.  Investigations of the dynamics and mechanical dissipation of a fused silica suspension , 2002 .

[23]  Kyle Barbary,et al.  Direct observation of broadband coating thermal noise in a suspended interferometer , 2004 .

[24]  Yuri Levin Internal thermal noise in the LIGO test masses: A direct approach , 1998 .

[25]  Martin M. Fejer,et al.  Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings , 2001, gr-qc/0109073.

[26]  M. M. Fejer,et al.  Thermoelastic dissipation in inhomogeneous media: loss measurements and displacement noise in coated test masses for interferometric gravitational wave detectors , 2004 .

[27]  S. Rowan,et al.  Q factor measurements on prototype fused quartz pendulum suspensions for use in gravitational wave detectors , 1997 .

[28]  Patrice Hello,et al.  Thermal noise in mirrors of interferometric gravitational wave antennas , 1998 .

[29]  Richard F. Greene,et al.  On a Theorem of Irreversible Thermodynamics , 1952 .

[30]  S. P. Vyatchanin,et al.  Thermodynamical fluctuations in optical mirror coatings , 2003, cond-mat/0302617.

[31]  Michael L. Gorodetsky,et al.  Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae , 1999 .

[32]  Kenji Numata,et al.  Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. , 2004, Physical review letters.

[33]  Gillespie,et al.  Thermally excited vibrations of the mirrors of laser interferometer gravitational-wave detectors. , 1995, Physical review. D, Particles and fields.

[34]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[35]  P. Saulson,et al.  Thermal noise in mechanical experiments. , 1990, Physical review. D, Particles and fields.

[36]  Martin M. Fejer,et al.  Mechanical loss in tantala/silica dielectric mirror coatings , 2003 .

[37]  M. Pinard,et al.  Thermoelastic effects at low temperatures and quantum limits in displacement measurements , 2001 .

[38]  Alan W. Hoffman,et al.  Measurements of the mechanical Q of single-crystal silicon at low temperatures , 1978 .

[39]  K. Kawabe,et al.  Thermal noise caused by an inhomogeneous loss in the mirrors used in the gravitational wave detector , 2002 .

[40]  Ryutaro Takahashi,et al.  Status of TAMA300 , 2004 .

[41]  Rowan,et al.  Very high Q measurements on a fused silica monolithic pendulum for use in enhanced gravity wave detectors , 2000, Physical review letters.

[42]  Takayuki Tomaru,et al.  Present status of large-scale cryogenic gravitational wave telescope , 2003 .