Continuous-time operational modal analysis in the presence of harmonic disturbances—The multivariate case

Abstract Recently [R. Pintelon, B. Peeters, P. Guillaume, Continuous-time operational modal analysis in the presence of harmonic disturbances, Mechanical Systems and Signal Processing 22 (5) (2008) 1017–1035] a single-output algorithm for continuous-time operational modal analysis in the presence of harmonic disturbances with time-varying frequency has been developed. This paper extends the results of Pintelon, et al. [Continuous-time operational modal analysis in the presence of harmonic disturbances, Mechanical Systems and Signal Processing 22 (5) (2008) 1017–1035] to multi-output signals. The statistical performance of the proposed maximum likelihood estimator is illustrated on simulations and real helicopter data.

[1]  Yves Rolain,et al.  Identification of invariants of (over)parameterized models: finite sample results , 1999, IEEE Trans. Autom. Control..

[2]  Brett Ninness,et al.  On Gradient-Based Search for Multivariable System Estimates , 2008, IEEE Transactions on Automatic Control.

[3]  L. Hermans,et al.  MODAL TESTING AND ANALYSIS OF STRUCTURES UNDER OPERATIONAL CONDITIONS: INDUSTRIAL APPLICATIONS , 1999 .

[4]  Rik Pintelon,et al.  Continuous-Time Noise Modeling From Sampled Data , 2006, IEEE Transactions on Instrumentation and Measurement.

[5]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[6]  Prasenjit Mohanty,et al.  Operational modal analysis in the presence of harmonic excitation , 2004 .

[7]  Thomas Kailath,et al.  Linear Systems , 1980 .

[8]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[9]  R. Fletcher Practical Methods of Optimization , 1988 .

[10]  B. Peeters,et al.  Stochastic System Identification for Operational Modal Analysis: A Review , 2001 .

[11]  Rik Pintelon,et al.  Uncertainty calculation in (operational) modal analysis , 2007 .

[12]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[13]  D. Brillinger Time series - data analysis and theory , 1981, Classics in applied mathematics.

[14]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[15]  Morten Hartvig Hansen,et al.  Two methods for estimating aeroelastic damping of operational wind turbine modes from experiments , 2006 .

[16]  Rik Pintelon,et al.  On the frequency scaling in continuous-time modeling , 2005, IEEE Transactions on Instrumentation and Measurement.

[17]  Gene H. Golub,et al.  Matrix computations , 1983 .

[18]  Daniel Rixen,et al.  Modified ERA method for operational modal analysis in the presence of harmonic excitations , 2006 .

[19]  J. Schoukens,et al.  Box-Jenkins identification revisited - Part I: Theory , 2006, Autom..

[20]  Rik Pintelon,et al.  Box-Jenkins identification revisited - Part III: Multivariable systems , 2007, Autom..

[21]  B. Peeters,et al.  Continuous-Time Operational ModalAnalysis- inthePresence ofHarmonic Disturbances , 2008 .

[22]  Rik Pintelon,et al.  Identification of continuous-time systems using arbitrary signals , 1997, Autom..

[23]  Joseph C. S. Lai,et al.  ARMAX modal parameter identification in the presence of unmeasured excitation—I: Theoretical background , 2007 .

[24]  Joseph C. S. Lai,et al.  ARMAX modal parameter identification in the presence of unmeasured excitation—II: Numerical and experimental verification , 2007 .

[25]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[26]  Rik Pintelon,et al.  Brief paper: Box-Jenkins identification revisited-Part III , 2007 .