Acceleration with self-injection for an all-optical radiation source at LNF

Abstract We discuss a new compact γ -ray source aiming at high spectral density, up to two orders of magnitude higher than currently available bremsstrahlung sources, and conceptually similar to Compton sources based on conventional linear accelerators. This new source exploits electron bunches from laser-driven electron acceleration in the so-called self-injection scheme and uses a counter-propagating laser pulse to obtain X and γ -ray emission via Thomson/Compton scattering. The proposed experimental configuration inherently provides a unique test-bed for studies of fundamental open issues of electrodynamics. In view of this, a preliminary discussion of recent results on self-injection with the FLAME laser is also given.

[1]  P. Balcou,et al.  High-energy electron beam production by femtosecond laser interactions with exploding-foil plasmas. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[3]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[4]  A. Giulietti,et al.  Femtosecond interferometry of propagation of a laminar ionization front in a gas. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  J. Meyer-ter-Vehn,et al.  Laser wake field acceleration: the highly non-linear broken-wave regime , 2002 .

[6]  C. Benedetti,et al.  ${\tt ALaDyn}$: A High-Accuracy PIC Code for the Maxwell–Vlasov Equations , 2008, IEEE Transactions on Plasma Science.

[7]  W. A. Gillespie,et al.  High quality electron beams from a laser wakefield accelerator , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[8]  M. Levine,et al.  High Energy Gamma Ray Beams from Compton Backscattered Laser Light , 1983, IEEE Transactions on Nuclear Science.

[9]  V Malka,et al.  High-resolution gamma-ray radiography produced by a laser-plasma driven electron source. , 2005, Physical review letters.

[10]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[11]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[12]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[13]  E. Esarey,et al.  Beat wave injection of electrons into plasma waves using two interfering laser pulses. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Y. Glinec,et al.  Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses , 2006, Nature.

[15]  Richard H. Milburn,et al.  ELECTRON SCATTERING BY AN INTENSE POLARIZED PHOTON FIELD , 1963 .

[16]  A. Rousse,et al.  Imaging Electron Trajectories in Laser Wakefield Cavity using betatron X-Ray Radiation , 2006, 2007 Conference on Lasers and Electro-Optics (CLEO).

[17]  F. Amiranoff,et al.  Characterization of electron beams produced by ultrashort (30 fs) laser pulses , 2001 .

[18]  L. Serafini,et al.  PIC simulations of the production of high-quality electron beams via laser–plasma interaction , 2009 .

[19]  A. Lifschitz,et al.  Observation of beam loading in a laser-plasma accelerator. , 2009, Physical review letters.

[20]  Sebastian M. Pfotenhauer,et al.  A method of determining narrow energy spread electron beams from a laser plasma wakefield accelerator using undulator radiation , 2009 .

[21]  F. Pegoraro,et al.  Radiation reaction effects on radiation pressure acceleration , 2010, 1008.1685.

[22]  Toshiki Tajima,et al.  Light intensification towards the Schwinger limit. , 2003, Physical review letters.

[23]  Timur Zh. Esirkepov,et al.  Nonlinear Thomson scattering in the strong radiation damping regime , 2005 .

[24]  E. M. Lifshitz,et al.  Classical theory of fields , 1952 .

[25]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .

[26]  Richard H. Milburn,et al.  High-Energy Photons from Compton Scattering of Light on 6.0-GeV Electrons , 1965 .

[27]  Wim Leemans The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator , 2010 .

[28]  Gizzi,et al.  Simultaneous measurements of hard x-rays and second harmonic emission in fs laser-target interactions. , 1996, Physical review letters.

[29]  B Yaakobi,et al.  Editor: I. I. Sobelman. X-Ray Plasma Spectroscopy and the Properties of Multi-Charged Ions (Volume 179, Proceedings of the Lebedev Physics Institute), (NOVA Science Publishers, Inc., New York, 1988) 256 pages, $87.00 , 1989 .

[30]  A. Giulietti,et al.  Thomson backscattering X-rays from ultra-relativistic electron bunches and temporally shaped laser pulses , 2005 .

[31]  C. Keitel,et al.  Strong signatures of radiation reaction below the radiation-dominated regime. , 2008, Physical review letters.

[32]  Rajiv C. Shah,et al.  All-optical Compton gamma-ray source , 2012, Nature Photonics.

[33]  M. Borghesi,et al.  Production of ultracollimated bunches of multi-MeV electrons by 35 fs laser pulses propagating in exploding-foil plasmas , 2002 .

[34]  S. G. Anderson,et al.  Characterization and applications of a tunable, laser-based, MeV-class Compton-scattering γ -ray source , 2010 .

[35]  Julian Schwinger,et al.  On gauge invariance and vacuum polarization , 1951 .

[36]  Leonida A. Gizzi,et al.  SHEEBA: A spatial high energy electron beam analyzer , 2005 .

[37]  A. Giulietti,et al.  Tracking propagation of ultrashort intense laser pulses in gases via probing of ionization. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Alexander Pukhov,et al.  Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons , 2004 .

[39]  M Galimberti,et al.  Intense gamma-ray source in the giant-dipole-resonance range driven by 10-TW laser pulses. , 2008, Physical review letters.

[40]  P. Meystre,et al.  Creation of three-species 87Rb–40K–6Li molecules: interfering for the best , 2008 .

[41]  A Pak,et al.  Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection. , 2010, Physical review letters.

[42]  F. Pegoraro,et al.  Radiation-pressure-dominant acceleration: Polarization and radiation reaction effects and energy increase in three-dimensional simulations. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  H Schwoerer,et al.  Thomson-backscattered x rays from laser-accelerated electrons. , 2006, Physical review letters.