Changes in Purkinje cell firing and gene expression precede behavioral pathology in a mouse model of SCA2

Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited disorder, which is caused by a pathological expansion of a polyglutamine (polyQ) tract in the coding region of the ATXN2 gene. Like other ataxias, SCA2 most overtly affects Purkinje cells (PCs) in the cerebellum. Using a transgenic mouse model expressing a full-length ATXN2Q127-complementary DNA under control of the Pcp2 promoter (a PC-specific promoter), we examined the time course of behavioral, morphologic, biochemical and physiological changes with particular attention to PC firing in the cerebellar slice. Although motor performance began to deteriorate at 8 weeks of age, reductions in PC number were not seen until after 12 weeks. Decreases in the PC firing frequency first showed at 6 weeks and paralleled deterioration of motor performance with progression of disease. Transcription changes in several PC-specific genes such as Calb1 and Pcp2 mirrored the time course of changes in PC physiology with calbindin-28 K changes showing the first small, but significant decreases at 4 weeks. These results emphasize that in this model of SCA2, physiological and behavioral phenotypes precede morphological changes by several weeks and provide a rationale for future studies examining the effects of restoration of firing frequency on motor function and prevention of future loss of PCs.

[1]  Rebecca F. Halperin,et al.  Suppression of Calbindin-D28k Expression Exacerbates SCA1 Phenotype in a Disease Mouse Model , 2012, The Cerebellum.

[2]  M. Ares,et al.  The splicing regulator Rbfox2 is required for both cerebellar development and mature motor function. , 2012, Genes & development.

[3]  H. Paulson,et al.  Early Changes in Cerebellar Physiology Accompany Motor Dysfunction in the Polyglutamine Disease Spinocerebellar Ataxia Type 3 , 2011, The Journal of Neuroscience.

[4]  Harry T Orr,et al.  Aminopyridines Correct Early Dysfunction and Delay Neurodegeneration in a Mouse Model of Spinocerebellar Ataxia Type 1 , 2011, The Journal of Neuroscience.

[5]  Mani Ramaswami,et al.  The Ataxin-2 protein is required for microRNA function and synapse-specific long-term olfactory habituation , 2011, Proceedings of the National Academy of Sciences.

[6]  T. Otis,et al.  Molecular basis for the high THIP/gaboxadol sensitivity of extrasynaptic GABA(A) receptors. , 2011, Journal of neurophysiology.

[7]  Istvan Mody,et al.  The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain , 2011, Nature Genetics.

[8]  A. Singleton,et al.  Human ataxias: a genetic dissection of inositol triphosphate receptor (ITPR1)-dependent signaling , 2010, Trends in Neurosciences.

[9]  S. Pulst,et al.  KCNC3: phenotype, mutations, channel biophysics—a study of 260 familial ataxia patients , 2010, Human mutation.

[10]  L. Raymond,et al.  Early Increase in Extrasynaptic NMDA Receptor Signaling and Expression Contributes to Phenotype Onset in Huntington's Disease Mice , 2010, Neuron.

[11]  S. Pulst,et al.  Deranged Calcium Signaling and Neurodegeneration in Spinocerebellar Ataxia Type 2 , 2009, The Journal of Neuroscience.

[12]  William Wisden,et al.  Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning , 2009, Nature Neuroscience.

[13]  G. Auburger,et al.  Ataxin-2 associates with rough endoplasmic reticulum , 2009, Experimental Neurology.

[14]  P. Strata,et al.  An orphan ionotropic glutamate receptor: The δ2 subunit , 2009, Neuroscience.

[15]  X. Chen,et al.  Deranged Calcium Signaling and Neurodegeneration in Spinocerebellar Ataxia Type 3 , 2008, The Journal of Neuroscience.

[16]  Mirko H. H. Schmidt,et al.  Ataxin-2 associates with the endocytosis complex and affects EGF receptor trafficking. , 2008, Cellular signalling.

[17]  Masahiko Watanabe,et al.  Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant CaV2.1 channels , 2008, Proceedings of the National Academy of Sciences.

[18]  M. Yuzaki,et al.  Ho15J—A new hotfoot allele in a hot spot in the gene encoding the δ2 glutamate receptor , 2007, Brain Research.

[19]  H. Lehrach,et al.  Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. , 2007, Molecular biology of the cell.

[20]  P. Lory,et al.  Voltage-gated calcium channels in genetic diseases. , 2006, Biochimica et biophysica acta.

[21]  L. Pallanck,et al.  Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes. , 2006, Human molecular genetics.

[22]  Dagmar Nolte,et al.  Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes , 2006, Nature Genetics.

[23]  Kamran Khodakhah,et al.  Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia , 2006, Nature Neuroscience.

[24]  G. Guillén,et al.  Ubiquitous expression of human SCA2 gene under the regulation of the SCA2 self promoter cause specific Purkinje cell degeneration in transgenic mice , 2006, Neuroscience Letters.

[25]  Tim-Rasmus Kiehl,et al.  Generation and characterization of Sca2 (ataxin-2) knockout mice. , 2006, Biochemical and biophysical research communications.

[26]  S. Pulst,et al.  Spinocerebellar ataxia type 2: polyQ repeat variation in the CACNA1A calcium channel modifies age of onset. , 2005, Brain : a journal of neurology.

[27]  H. Hendriks,et al.  Age at onset variance analysis in spinocerebellar ataxias: A study in a Dutch–French cohort , 2005, Annals of neurology.

[28]  Takashi Yoshida,et al.  Defective control and adaptation of reflex eye movements in mutant mice deficient in either the glutamate receptor δ2 subunit or Purkinje cells , 2005, The European journal of neuroscience.

[29]  Ilya Bezprozvanny,et al.  Deranged neuronal calcium signaling and Huntington disease. , 2004, Biochemical and biophysical research communications.

[30]  J. Priess,et al.  ATX-2, the C. elegans ortholog of ataxin 2, functions in translational regulation in the germline , 2004, Development.

[31]  Daniel R. Scoles,et al.  The autosomal recessive juvenile Parkinson disease gene product, parkin, interacts with and ubiquitinates synaptotagmin XI. , 2003, Human molecular genetics.

[32]  M. Hayden,et al.  Huntingtin and Huntingtin-Associated Protein 1 Influence Neuronal Calcium Signaling Mediated by Inositol-(1,4,5) Triphosphate Receptor Type 1 , 2003, Neuron.

[33]  S. Schiffmann,et al.  ‘New’ functions for ‘old’ proteins: The role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice , 2002, The Cerebellum.

[34]  L. Pallanck,et al.  A Drosophila homolog of the polyglutamine disease gene SCA2 is a dosage-sensitive regulator of actin filament formation. , 2002, Genetics.

[35]  R. Felix Channelopathies: ion channel defects linked to heritable clinical disorders , 2000, Journal of medical genetics.

[36]  S. Pulst,et al.  Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human , 2000, Nature Genetics.

[37]  S. Pulst,et al.  A novel protein with RNA-binding motifs interacts with ataxin-2. , 2000, Human molecular genetics.

[38]  Bruce P. Bean,et al.  Ionic Currents Underlying Spontaneous Action Potentials in Isolated Cerebellar Purkinje Neurons , 1999, The Journal of Neuroscience.

[39]  E. Burright,et al.  Reduced immunoreactivity to calcium-binding proteins in Purkinje cells precedes onset of ataxia in spinocerebellar ataxia-1 transgenic mice , 1998, Neurology.

[40]  M. Häusser,et al.  Tonic Synaptic Inhibition Modulates Neuronal Output Pattern and Spatiotemporal Synaptic Integration , 1997, Neuron.

[41]  D. Linden,et al.  Neurodegeneration in Lurcher mice caused by mutation in δ2 glutamate receptor gene , 1997, Nature.

[42]  O. Garaschuk,et al.  Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Georg Auburger,et al.  Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2 , 1996, Nature Genetics.

[44]  G. Collingridge,et al.  Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1 , 1994, Nature.

[45]  Michael Litt,et al.  Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1 , 1994, Nature Genetics.

[46]  D. Harriman CEREBELLAR CORTEX, CYTOLOGY AND ORGANIZATION , 1974 .

[47]  A. Koeppen,et al.  The pathogenesis of spinocerebellar ataxia , 2008, The Cerebellum.

[48]  U. Rüb,et al.  Spinocerebellar ataxia 2 (SCA2) , 2008, The Cerebellum.

[49]  S. Pulst,et al.  The ortholog of human ataxin-2 is essential for early embryonic patterning in C. elegans , 2007, Journal of Molecular Neuroscience.

[50]  H. Zoghbi,et al.  Spinocerebellar ataxia type 1. , 2014, Handbook of clinical neurology.

[51]  William B. Dobyns,et al.  Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel , 1997, Nature Genetics.

[52]  H. Zoghbi,et al.  Cloning and developmental expression analysis of the murine homolog of the spinocerebellar ataxia type 1 gene (Sca1). , 1996, Human molecular genetics.

[53]  H. Zoghbi,et al.  Expression analysis of the ataxin–1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals , 1995, Nature Genetics.