The estimation of spatial positions by using an omnidirectional camera system

With an omnidirectional camera system, it is possible to take 360°views of the surrounding area at each camera position. These systems are used particularly in robotic applications, in autonomous navigation and supervision technology for ego­motion estimation. In addition to the visual capture of the environment itself, we can compute the parameters of orientation and position from image sequences, i.e. we get three parameters of position and three of orientation (yaw rate, pitch and roll angle) at each time of acquisition. The aim of the presented project is to investigate the quality of the spatial trajectory of a mobile survey vehicle from the recorded image sequences. In this paper, we explain the required photogrammetric background and show the advantages of omnidirectional camera systems for this task. We present the first results on our test set and discuss alternative applications for omnidirectional cameras.

[1]  C. A. HART,et al.  Manual of Photogrammetry , 1947, Nature.

[2]  W. Hargrove,et al.  Photogrammetric Engineering & Remote Sensing , 2022 .

[3]  Andreas Eichhorn,et al.  Ein Beitrag zur Identifikation von dynamischen Strukturmodellen mit Methoden der adaptiven Kalman-Filterung , 2005 .

[4]  T. Läbe AUTOMATIC RELATIVE ORIENTATION OF IMAGES , 2006 .

[5]  M. Yachida Omnidirectional sensing and combined multiple sensing , 1998, Proceedings 1998 IEEE and ATR Workshop on Computer Vision for Virtual Reality Based Human Communications.

[6]  C. L. Goodall,et al.  Improving usability of low-cost INS/GPS navigation systems using intelligent techniques , 2009 .

[7]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Michel Dhome,et al.  Monocular Vision Based SLAM for Mobile Robots , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[9]  Peter Schulze Lammers,et al.  2nd International Conference on Machine Control & Guidance , 2010 .

[10]  Shree K. Nayar,et al.  Ego-motion and omnidirectional cameras , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[11]  David Nistér,et al.  An efficient solution to the five-point relative pose problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  S Abrahama Towards Autonomous High Precision Calibration of Digital Cameras , 2008 .

[13]  Wolfgang Niemeier Ausgleichungsrechnung : eine Einführung für Studierende und Praktiker des Vermessungs- und Geoinformationswesens , 2001 .

[14]  Steffen Abraham,et al.  Towards autonomous high-precision calibration of digital cameras , 1997, Optics & Photonics.

[15]  Yasushi Yagi,et al.  Iconic memory-based omnidirectional route panorama navigation , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Dr. Günther Multi-Sensor Systems for Machine Guidance and Control , 2002 .