A semi‐algebraic approach that enables the design of inter‐grid operators to optimize multigrid convergence
暂无分享,去创建一个
[1] John Odentrantz,et al. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.
[2] J. Sylvester. LX. Thoughts on inverse orthogonal matrices, simultaneous signsuccessions, and tessellated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers , 1867 .
[3] S. McCormick,et al. A multigrid tutorial (2nd ed.) , 2000 .
[4] A. Brandt. Rigorous quantitative analysis of multigrid, I: constant coefficients two-level cycle with L 2 -norm , 1994 .
[5] 宮沢 政清,et al. P. Bremaud 著, Markov Chains, (Gibbs fields, Monte Carlo simulation and Queues), Springer-Verlag, 1999年 , 2000 .
[6] Ulrike Meier Yang,et al. Parallel Algebraic Multigrid Methods — High Performance Preconditioners , 2006 .
[7] William L. Briggs,et al. A multigrid tutorial, Second Edition , 2000 .
[8] Alan J. Laub,et al. Matrix analysis - for scientists and engineers , 2004 .
[9] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[10] StübenKlaus. Algebraic multigrid (AMG) , 1983 .
[11] Marcel F. Neuts,et al. Matrix-geometric solutions in stochastic models - an algorithmic approach , 1982 .
[12] P. Wesseling. An Introduction to Multigrid Methods , 1992 .
[13] A. Brandt. Algebraic multigrid theory: The symmetric case , 1986 .
[14] J. W. Ruge,et al. 4. Algebraic Multigrid , 1987 .