Germano identity-based subgrid-scale modeling: A brief survey of variations on a fertile theme

It has now been over 20 years since the introduction of the Germano identity. Mostly, the identity has been applied to closures for the subgrid-scale fluxes required in large eddy simulations in the bulk of turbulent flows. However, the basic ideas underlying the Germano identity can be applied in various other contexts. In recent years a number of such generalizations have been developed, and several of these are surveyed in this paper. The survey is based on an interpretation of the Germano identity stating that the sum of resolved and modeled contributions to basic quantities of intrinsic physical interest must be independent of filter scale. The focus of this survey is on the conceptual bases of the various generalizations and their common features, as a way of pointing to possible further extensions.

[1]  Omar M. Knio,et al.  Spectral and hyper eddy viscosity in high-Reynolds-number turbulence , 2000, Journal of Fluid Mechanics.

[2]  C. Meneveau,et al.  On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet , 1994, Journal of Fluid Mechanics.

[3]  J. Ferziger,et al.  Evaluation of subgrid-scale models using an accurately simulated turbulent flow , 1979, Journal of Fluid Mechanics.

[4]  M. Germano,et al.  Turbulence: the filtering approach , 1992, Journal of Fluid Mechanics.

[5]  Charles Meneveau,et al.  A dynamic flame surface density model for large eddy simulation of turbulent premixed combustion , 2004 .

[6]  F. Ducros,et al.  A thickened flame model for large eddy simulations of turbulent premixed combustion , 2000 .

[7]  C. Meneveau,et al.  A Lagrangian dynamic subgrid-scale model of turbulence , 1994, Journal of Fluid Mechanics.

[8]  C. Meneveau,et al.  Dynamic roughness model for large-eddy simulation of turbulent flow over multiscale, fractal-like rough surfaces , 2011, Journal of Fluid Mechanics.

[9]  F. Porté-Agel,et al.  A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer , 2000, Journal of Fluid Mechanics.

[10]  Massimo Germano,et al.  Properties of the hybrid RANS/LES filter , 2004 .

[11]  Ömer L. Gülder,et al.  Inner cutoff scale of flame surface wrinkling in turbulent premixed flames , 1995 .

[12]  Charles Meneveau,et al.  A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows , 2005 .

[13]  Assad A. Oberai,et al.  Variational formulation of the Germano identity for the Navier–Stokes equations , 2005 .

[14]  P. Moin,et al.  A dynamic subgrid‐scale model for compressible turbulence and scalar transport , 1991 .

[15]  F. C. Gouldin,et al.  Chemical Closure Model for Fractal Flamelets , 1989 .

[16]  Charles Meneveau,et al.  Effects of the Similarity Model in Finite-Difference LES of Isotropic Turbulence Using a Lagrangian Dynamic Mixed Model , 1999 .

[17]  C. Meneveau,et al.  Renormalized numerical simulation of flow over planar and non-planar fractal trees , 2007 .

[18]  F. Porté-Agel,et al.  Large-Eddy Simulation of Atmospheric Boundary-Layer Flow Over Fluvial-Like Landscapes Using a Dynamic Roughness Model , 2012, Boundary-Layer Meteorology.

[19]  G. Eyink,et al.  Physical mechanism of the two-dimensional enstrophy cascade. , 2003, Physical review letters.

[20]  C. Meneveau,et al.  Modeling turbulent flow over fractal trees using renormalized numerical simulation: Alternate formulations and numerical experiments , 2012 .

[21]  Charles Meneveau Turbulence: Subgrid-Scale Modeling , 2010, Scholarpedia.

[22]  P. Moin,et al.  A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar , 1998 .

[23]  C. Meneveau,et al.  Scale-Invariance and Turbulence Models for Large-Eddy Simulation , 2000 .

[24]  J. Koseff,et al.  A dynamic mixed subgrid‐scale model and its application to turbulent recirculating flows , 1993 .

[25]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[26]  P. Moin,et al.  A dynamic localization model for large-eddy simulation of turbulent flows , 1995, Journal of Fluid Mechanics.

[27]  Shiyi Chen,et al.  Constrained subgrid-scale stress model for large eddy simulation , 2008 .

[28]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[29]  Assad A. Oberai,et al.  A dynamic approach for evaluating parameters in a numerical method , 2005 .

[30]  C. Meneveau,et al.  A power-law flame wrinkling model for LES of premixed turbulent combustion Part II: dynamic formulation , 2002 .

[31]  Charles Meneveau,et al.  Modeling turbulent flow over fractal trees with renormalized numerical simulation , 2005, J. Comput. Phys..

[32]  Alan R. Kerstein,et al.  A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence , 2012 .

[33]  G. Eyink,et al.  Subgrid-scale modeling of helicity and energy dissipation in helical turbulence. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Généralisation de l'identité de Germano et application à la modélisation sous-maille , 1999 .

[35]  Charles Meneveau,et al.  Near-Wake Turbulent Flow Structure and Mixing Length Downstream of a Fractal Tree , 2012, Boundary-Layer Meteorology.

[36]  C. Meneveau Statistics of turbulence subgrid-scale stresses: Necessary conditions and experimental tests , 1994 .

[37]  A. W. Vreman An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications , 2004 .

[38]  Yi Li,et al.  A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence , 2008, 0804.1703.

[39]  Pierre Sagaut,et al.  On the filtering paradigm for LES of flows with discontinuities , 2005 .

[40]  P. Sagaut,et al.  A multilevel algorithm for large-Eddy simulation of turbulent compressible flows , 2001 .

[41]  C. Meneveau,et al.  Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation , 2003, Journal of Fluid Mechanics.

[42]  P. Moin,et al.  A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries , 2007 .

[43]  Donald J. Bergstrom,et al.  A dynamic nonlinear subgrid-scale stress model , 2005 .

[44]  Josette Bellan,et al.  Subgrid-scale models and large-eddy simulation of oxygen stream disintegration and mixing with a hydrogen or helium stream at supercritical pressure , 2011, Journal of Fluid Mechanics.

[45]  D. Lilly,et al.  A proposed modification of the Germano subgrid‐scale closure method , 1992 .

[46]  A. Leonard Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows , 1975 .

[47]  Luca Biferale,et al.  SHELL MODELS OF ENERGY CASCADE IN TURBULENCE , 2003 .

[48]  U. Piomelli,et al.  Wall-layer models for large-eddy simulations , 2008 .