esys-Escript User’s Guide: Solving Partial Differential Equations with Escript and Finley Release - 3.2.1 (r3613)

esys.escript is a python-based environment for implementing mathematical models, in particular those based on coupled, non-linear, time-dependent partial differential equations. It consists of four major components • esys.escript core library • finite element solver esys.finley (which uses fast vendor-supplied solvers or our paso linear solver library) • the meshing interface esys.pycad • a model library. The current version supports parallelization through both MPI for distributed memory and OpenMP for distributed shared memory. Please see Chapter 2 for changes to the way to launch esys.escript scripts. For more info on this and other changes from previous releases see Appendix B. If you use this software in your research, then we would appreciate (but do not require) a citation. Some relevant references can be found in Appendix D.

[1]  Lutz Gross,et al.  Lazy evaluation of PDE coefficients in the EScript system , 2010 .

[2]  H. Elman,et al.  Efficient preconditioning of the linearized NavierStokes equations for incompressible flow , 2001 .

[3]  Klaus Regenauer-Lieb,et al.  Towards a Self Consistent Plate Mantle Model that Includes Elasticity: Simple Benchmarks and Application to Basic Modes of Convection , 2005 .

[4]  Yousef Saad,et al.  ARMS: an algebraic recursive multilevel solver for general sparse linear systems , 2002, Numer. Linear Algebra Appl..

[5]  Pascal Hénon,et al.  PaStiX: A High-Performance Parallel Direct Solver for Sparse Symmetric Definite Systems , 2000 .

[6]  Artak Amirbekyan,et al.  Efficient solvers for incompressible fluid flows in geosciences , 2008 .

[7]  Rüdiger Weiss,et al.  Parameter-Free Iterative Linear Solvers , 1996 .

[8]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[9]  Yair Shapira,et al.  Matrix-based Multigrid , 2003 .

[10]  E. Christiansen,et al.  Handbook of Numerical Analysis , 1996 .

[11]  G. Carey,et al.  Least-squares mixed finite elements for second-order elliptic problems , 1994 .

[12]  Endong Wang,et al.  Intel Math Kernel Library , 2014 .

[13]  H. Elman,et al.  Efficient preconditioning of the linearized Navier-Stokes , 1999 .

[14]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[15]  O. Zienkiewicz The Finite Element Method In Engineering Science , 1971 .

[16]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[17]  James Demmel,et al.  A Supernodal Approach to Sparse Partial Pivoting , 1999, SIAM J. Matrix Anal. Appl..