Internet research using partial least squares structural equation modeling (PLS-SEM)

[1]  Pratyush Nidhi Sharma,et al.  Prediction-Oriented Model Selection in Partial Least Squares Path Modeling , 2018, Decis. Sci..

[2]  Galit Shmueli,et al.  Predictive model assessment in PLS-SEM: guidelines for using PLSpredict , 2019, European Journal of Marketing.

[3]  Stephanie Hui-Wen Chuah,et al.  How functional and emotional ads drive smartwatch adoption , 2019, Internet Res..

[4]  Wen-Lung Shiau,et al.  Methodological research on partial least squares structural equation modeling (PLS-SEM) , 2019, Internet Res..

[5]  Manuel J. Sánchez-Franco,et al.  Understanding relationship quality in hospitality services , 2019, Internet Res..

[6]  Cheah Jun-Hwa,et al.  The effect of selfie promotion and celebrity endorsed advertisement on decision-making processes , 2019, Internet Res..

[7]  Tingting Zhang,et al.  The role of virtual try-on technology in online purchase decision from consumers' aspect , 2019, Internet Res..

[8]  Ezlika M. Ghazali,et al.  Multiple sequential mediation in an extended uses and gratifications model of augmented reality game Pokémon Go , 2019, Internet Res..

[9]  Marko Sarstedt,et al.  Rethinking some of the rethinking of partial least squares , 2019, European Journal of Marketing.

[10]  Michael Klesel,et al.  A test for multigroup comparison using partial least squares path modeling , 2019, Internet Res..

[11]  Florian Schuberth,et al.  Measurement error correlation within blocks of indicators in consistent partial least squares , 2019, Internet Res..

[12]  Marko Sarstedt,et al.  Heuristics versus statistics in discriminant validity testing: a comparison of four procedures , 2019, Internet Res..

[13]  Huseyin Uzunboylu,et al.  The life satisfaction of teachers at work place, research of structural equation modelling regarding general and organized cynicism , 2018 .

[14]  Marko Sarstedt,et al.  Addressing Endogeneity in International Marketing Applications of Partial Least Squares Structural Equation Modeling , 2018, Journal of International Marketing.

[15]  Stacie Petter,et al.  "Haters Gonna Hate": PLS and Information Systems Research , 2018, Data Base.

[16]  J. Henseler Partial least squares path modeling: Quo vadis? , 2018, Quality & Quantity.

[17]  Faizan Ali,et al.  An Assessment of the Use of Partial Least Squares Structural Equation Modeling (PLS-SEM) in Hospitality Research , 2017 .

[18]  Ned Kock,et al.  Variation Sharing: A Novel Numeric Solution to the Path Bias Underestimation Problem of PLS-Based SEM , 2017, Int. J. Strateg. Decis. Sci..

[19]  Edward E. Rigdon,et al.  On Comparing Results from CB-SEM and PLS-SEM: Five Perspectives and Five Recommendations , 2017 .

[20]  Alain Yee-Loong Chong,et al.  An updated and expanded assessment of PLS-SEM in information systems research , 2017, Ind. Manag. Data Syst..

[21]  Wen-Lung Shiau,et al.  Factors affecting creativity in information system development: Insights from a decomposition and PLS-MGA , 2017, Ind. Manag. Data Syst..

[22]  Marko Sarstedt,et al.  Mirror, mirror on the wall: a comparative evaluation of composite-based structural equation modeling methods , 2017, Journal of the Academy of Marketing Science.

[23]  Geoffrey S. Hubona,et al.  Partial least squares path modeling : Updated guidelines , 2017 .

[24]  Nwachukwu Prince Ololube Is the Character of Institutional Leadership Central to the Quality of Higher Education (HE) Management? , 2017, Int. J. Strateg. Decis. Sci..

[25]  Christian Nitzl,et al.  The use of partial least squares structural equation modelling (PLS-SEM) in management accounting research: Directions for future theory development , 2016 .

[26]  J. Edwards,et al.  Partial least squares path modeling: Time for some serious second thoughts , 2016 .

[27]  Jörg Henseler,et al.  Testing moderating effects in PLS path models with composite variables , 2016, Ind. Manag. Data Syst..

[28]  Marko Sarstedt,et al.  Gain more insight from your PLS-SEM results: The importance-performance map analysis , 2016, Ind. Manag. Data Syst..

[29]  José L. Roldán,et al.  Prediction-oriented modeling in business research by means of PLS path modeling: Introduction to a JBR special section , 2016 .

[30]  Galit Shmueli,et al.  The elephant in the room: Predictive performance of PLS models , 2016 .

[31]  Joseph F. Hair,et al.  Estimation issues with PLS and CBSEM: Where the bias lies! ☆ , 2016 .

[32]  Marko Sarstedt,et al.  Segmentation of PLS path models by iterative reweighted regressions , 2015 .

[33]  Christian Nitzl,et al.  Mediation Analysis in Partial Least Squares Path Modeling: Helping Researchers Discuss More Sophisticated Models , 2016, Ind. Manag. Data Syst..

[34]  Marko Sarstedt,et al.  Testing measurement invariance of composites using partial least squares , 2016 .

[35]  Wen-Lung Shiau,et al.  Understanding behavioral intention to use a cloud computing classroom: A multiple model comparison approach , 2016, Inf. Manag..

[36]  Jörg Henseler,et al.  Consistent Partial Least Squares Path Modeling , 2015, MIS Q..

[37]  M. Sarstedt,et al.  A new criterion for assessing discriminant validity in variance-based structural equation modeling , 2015 .

[38]  Marko Sarstedt,et al.  PLS-SEM: Looking Back and Moving Forward , 2014 .

[39]  Peter M Bentler,et al.  On Components, Latent Variables, PLS and Simple Methods: Reactions to Rigdon's Rethinking of PLS. , 2014, Long range planning.

[40]  Joseph F. Hair,et al.  On the Emancipation of PLS-SEM: A Commentary on Rigdon (2012) , 2014 .

[41]  Detmar W. Straub,et al.  Common Beliefs and Reality About PLS , 2014 .

[42]  Arun Rai,et al.  Discovering Unobserved Heterogeneity in Structural Equation Models to Avert Validity Threats , 2013, MIS Q..

[43]  Marko Sarstedt,et al.  Editorial - Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance , 2013 .

[44]  Marko Sarstedt,et al.  An assessment of the use of partial least squares structural equation modeling in marketing research , 2012 .

[45]  Martin Wetzels,et al.  Hierarchical latent variable models in PLS-SEM: guidelines for using reflective-formative type models , 2012 .

[46]  Edward E. Rigdon,et al.  Rethinking Partial Least Squares Path Modeling: In Praise of Simple Methods , 2012 .

[47]  Joseph F. Hair,et al.  Partial Least Squares : The Better Approach to Structural Equation Modeling ? , 2012 .

[48]  Wynne W. Chin,et al.  When Imprecise Statistical Statements Become Problematic: A Response to Goodhue, Lewis, and Thompson , 2012, MIS Q..

[49]  D. Straub,et al.  Editor's comments: a critical look at the use of PLS-SEM in MIS quarterly , 2012 .

[50]  Marko Sarstedt,et al.  PLS-SEM: Indeed a Silver Bullet , 2011 .

[51]  Marko Sarstedt,et al.  Multigroup Analysis in Partial Least Squares (PLS) Path Modeling: Alternative Methods and Empirical Results , 2011 .

[52]  Siegfried P. Gudergan,et al.  Confirmatory Tetrad Analysis in PLS Path Modeling , 2008 .

[53]  Michel Tenenhaus,et al.  PLS path modeling , 2005, Comput. Stat. Data Anal..

[54]  Frank Huber,et al.  Capturing Customer Heterogeneity using a Finite Mixture PLS Approach , 2002 .

[55]  T. Dijkstra Some comments on maximum likelihood and partial least squares methods , 1983 .

[56]  C. Fornell,et al.  Evaluating Structural Equation Models with Unobservable Variables and Measurement Error , 1981 .

[57]  H. Wold Causal flows with latent variables: Partings of the ways in the light of NIPALS modelling , 1974 .

[58]  K. Jöreskog Simultaneous factor analysis in several populations , 1971 .