Study of the Pt3Sn(100), (111) and (110) Single Crystal Surfaces by LEISS and LEED

[1]  M. Paffett,et al.  Surface modification of Pt(111) by Sn adatoms: Evidence for the formation of ordered overlayers and surface alloys , 1989 .

[2]  Gauthier,et al.  Surface-sandwich segregation and multilayer relaxation on Pt0.5Ni0.5(110) measured by low-energy electron diffraction: An observation of face-related segregation reversal. , 1987, Physical review. B, Condensed matter.

[3]  D. Dwyer,et al.  The interaction of CO and O2 with the (111) surface of Pt3Ti , 1986 .

[4]  Marcus,et al.  Atomic structure of a {001} surface of Ni3Al. , 1986, Physical review. B, Condensed matter.

[5]  P. Ross,et al.  Superlattice leed patterns observed from [111] and [100] oriented single crystals of TiPt3 , 1984 .

[6]  W. Sachtler,et al.  Conversion of n-hexane over monofunctional supported and unsupported PtSn catalysts , 1980 .

[7]  H. Brongersma,et al.  Surface composition of some selected group VIII/Au and group VIII/Sn alloys☆ , 1979 .

[8]  E. Taglauer,et al.  Low Energy Ion Scattering: Elastic and Inelastic Effects , 1976 .

[9]  J. Clarke,et al.  Reactions of alkanes on platinum–tin and platinum–rhodium alloy films , 1975 .

[10]  V. Santen,et al.  A theory of surface enrichment in ordered alloys , 1974 .

[11]  R. Bouwman,et al.  Surface composition and depth concentration profile of platinum/tin alloys from combined X-ray photoelectron and Auger spectroscopic data , 1974 .

[12]  B. Farrell,et al.  Order-Disorder Transformation at the {100} Surface ofCu3Au , 1973 .

[13]  A. Holscher,et al.  Auger spectroscopic study of the surface composition of Pt/Sn alloys in ultrahigh vacuum and in the presence of oxygen and hydrogen , 1973 .

[14]  K. Cathro The Oxidation of Water‐Soluble Organic Fuels Using Platinum‐Tin Catalysts , 1969 .