Remote sensing using open-path dual-comb spectroscopy

[1]  D. Ward,et al.  Trace gas emissions from laboratory biomass fires measured by open-path Fourier transform infrared spectroscopy: Fires in grass and surface fuels , 1999 .

[2]  I. Pundt,et al.  2-D reconstruction of atmospheric concentration peaks from horizontal long path DOAS tomographic measurements: parametrisation and geometry within a discrete approach , 2005 .

[3]  Colm Sweeney,et al.  High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air , 2012 .

[4]  B. Mary,et al.  Nitrous Oxide Emission by Agricultural Soils: A Review of Spatial and Temporal Variability for Mitigation. , 2012 .

[5]  Daniel Zavala-Araiza,et al.  Using Multi-Scale Measurements to Improve Methane Emission Estimates from Oil and Gas Operations in the Barnett Shale Region, Texas. , 2015, Environmental science & technology.

[6]  Axel Lauer,et al.  Chemistry and the Linkages between Air Quality and Climate Change. , 2015, Chemical reviews.

[7]  I Coddington,et al.  Invited Article: A compact optically coherent fiber frequency comb. , 2015, The Review of scientific instruments.

[8]  P. Ciais,et al.  Characterization of interferences to in situ observations of δ 13 CH 4 and C 2 H 6 when using a cavity ring-down spectrometer at industrial sites , 2016 .

[9]  Esther Baumann,et al.  Broad-band frequency references in the near-infrared: Accurate dual comb spectroscopy of methane and acetylene , 2013 .

[10]  H. Tanimoto,et al.  Effect of air composition (N 2 , O 2 , Ar, and H 2 O) on CO 2 and CH 4 measurement by wavelength-scanned cavity ring-down spectroscopy: calibration and measurement strategy , 2012 .

[11]  Ingmar Hartl,et al.  Ultrafast fibre lasers , 2013, Nature Photonics.

[12]  Philip Jonathan,et al.  A New Technique for Monitoring the Atmosphere above Onshore Carbon Storage Projects that can Estimate the Locations and Mass Emission Rates of Detected Sources , 2017 .

[13]  P. Acedo,et al.  Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time. , 2018, Optics express.

[14]  P. Ciais,et al.  Analysis of temporal and spatial variability of atmospheric CO2 concentration within Paris from the GreenLITE™ laser imaging experiment , 2019 .

[15]  Nanophotonic Supercontinuum Based Mid-Infrared Dual-Comb Spectroscopy , 2020, 2020 IEEE Research and Applications of Photonics in Defense Conference (RAPID).

[16]  Gerard Wysocki,et al.  Mid-infrared dual-comb spectroscopy with interband cascade lasers. , 2019, Optics letters.

[17]  R. Atkinson Gas-phase tropospheric chemistry of organic compounds: a review , 1990 .

[18]  Roger J. Combs,et al.  Automated detection of methanol vapour by open path Fourier transform infrared spectrometry , 1994 .

[19]  Nathan R. Newbury,et al.  Searching for applications with a fine-tooth comb , 2011 .

[20]  A. Szentgyorgyi,et al.  Visible-Spanning Flat Supercontinuum for Astronomical Applications , 2018, Journal of Lightwave Technology.

[21]  I Coddington,et al.  Coherent linear optical sampling at 15 bits of resolution. , 2009, Optics letters.

[22]  P. Acedo,et al.  Flexible Electro-Optic, Single-Crystal Difference Frequency Generation Architecture for Ultrafast Mid-Infrared Dual-Comb Spectroscopy , 2018 .

[23]  D. Massé,et al.  Evaluation of a micrometeorological mass balance method employing an open-path laser for measuring methane emissions , 2004 .

[24]  Michal Lipson,et al.  Silicon-chip-based mid-infrared dual-comb spectroscopy , 2016, Nature Communications.

[25]  Nazanin Hoghooghi,et al.  Baseline-free quantitative absorption spectroscopy based on cepstral analysis. , 2019, Optics express.

[26]  D. Farmer,et al.  Summer ozone in the northern Front Range metropolitan area: weekend–weekday effects, temperature dependences, and the impact of drought , 2017 .

[27]  S. Diddams,et al.  Octave-spanning Ti:sapphire laser with a repetition rate >1 ghz for optical frequency measurements and comparisons. , 2006, Optics letters.

[28]  Allen L Robinson,et al.  Methane Emissions from United States Natural Gas Gathering and Processing. , 2015, Environmental science & technology.

[29]  B. Bjork,et al.  Phase-stabilized 100 mW frequency comb near 10 μm , 2018, Applied Physics B.

[30]  K. Cossel,et al.  Intercomparison of Open-Path Trace Gas Measurements with Two Dual Frequency Comb Spectrometers. , 2017, Atmospheric measurement techniques.

[31]  Róbert Mészáros,et al.  A review of numerical models to predict the atmospheric dispersion of radionuclides. , 2018, Journal of environmental radioactivity.

[32]  M. Giménez,et al.  Intercomparison of atmospheric dispersion models , 2003 .

[33]  K. Cossel,et al.  Mid-Infrared Dual-Comb Spectroscopy of Volatile Organic Compounds Across Long Open-Air Paths , 2019, 2019 Conference on Lasers and Electro-Optics (CLEO).

[35]  T. Johnson,et al.  Gas-Phase Databases for Quantitative Infrared Spectroscopy , 2004, Applied spectroscopy.

[36]  L. Morawska,et al.  A review of dispersion modelling and its application to the dispersion of particles : An overview of different dispersion models available , 2006 .

[37]  Jerome Faist,et al.  Dual-comb spectroscopy based on quantum-cascade-laser frequency combs , 2014, Nature Communications.

[38]  B. Lamb,et al.  Isoprene emission fluxes determined by an atmospheric tracer techniquE , 1986 .

[39]  Joanne H. Shorter,et al.  Landfill methane emissions measured by enclosure and atmospheric tracer methods , 1996 .

[40]  C. Sweeney,et al.  Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths , 2014, 1406.3326.

[41]  Daniel B. Holland,et al.  Decade-spanning high-precision terahertz frequency comb. , 2015, Physical review letters.

[42]  B. Bernhardt,et al.  Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers , 2010 .

[43]  Laura C Sinclair,et al.  Broadband Phase Spectroscopy over Turbulent Air Paths. , 2015, Physical review letters.

[44]  U. Keller,et al.  Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser , 2017, Science.

[45]  T. Meyers,et al.  Measuring Biosphere‐Atmosphere Exchanges of Biologically Related Gases with Micrometeorological Methods , 1988 .

[46]  David John Lary,et al.  Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft. , 2015, Environmental science & technology.

[47]  F. Fehsenfeld,et al.  Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results , 2011 .

[48]  R. Desjardins,et al.  Multi-Source Emission Determination Using an Inverse-Dispersion Technique , 2009 .

[49]  Feng Zhu,et al.  Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air , 2015 .

[50]  Xi-Cheng Zhang,et al.  Free-space electro-optics sampling of mid-infrared pulses , 1997 .

[51]  Takeshi Yasui,et al.  Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy , 2006 .

[52]  A Hati,et al.  Operation of an optically coherent frequency comb outside the metrology lab. , 2014, Optics express.

[53]  Ingmar Hartl,et al.  80 W, 120 fs Yb-fiber frequency comb. , 2010, Optics letters.

[54]  P. Ciais,et al.  Atmospheric inversions for estimating CO2 fluxes: methods and perspectives , 2010 .

[55]  S. Wofsy,et al.  Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region , 2012, Proceedings of the National Academy of Sciences.

[56]  Gareth Roberts,et al.  Field determination of biomass burning emission ratios and factors via open-path FTIR spectroscopy and fire radiative power assessment: headfire, backfire and residual smouldering combustion in African savannahs , 2011 .

[57]  Jean Sciare,et al.  Atmospheric measurements of ratios between CO 2 and co-emitted species from traffic: a tunnel study in the Paris megacity , 2014 .

[58]  Jianlei Sun,et al.  Use of open-path FTIR and inverse dispersion technique to quantify gaseous nitrogen loss from an intensive vegetable production site , 2014 .

[59]  Judith C. Chow,et al.  Review of volatile organic compound source apportionment by chemical mass balance , 2001 .

[60]  Florian Adler,et al.  High-power, hybrid Er:fiber/Tm:fiber frequency comb source in the 2 μm wavelength region. , 2012, Optics letters.

[61]  I. Coddington,et al.  Spectroscopy of the methane {nu}{sub 3} band with an accurate midinfrared coherent dual-comb spectrometer , 2011 .

[62]  B. Rappenglück,et al.  Nocturnal NO3 radical chemistry in Houston, TX , 2010 .

[63]  G. Burba,et al.  Accounting for spectroscopic effects in laser‐based open‐path eddy covariance flux measurements , 2019, Global change biology.

[64]  A. Turner,et al.  The BErkeley Atmospheric CO 2 Observation Network: initial evaluation , 2016 .

[65]  T. Kippenberg,et al.  Microresonator-Based Optical Frequency Combs , 2011, Science.

[66]  Kevin S Repasky,et al.  Micropulse differential absorption lidar for identification of carbon sequestration site leakage. , 2013, Applied optics.

[67]  G. Angelow,et al.  Direct frequency comb generation from an octave spanning prismless Ti:sapphire laser , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[68]  A. H. Lipkus Application of Legendre Polynomials to the Elimination of Baseline Variation in Biological FT-IR Spectra , 1988 .

[69]  M. Marciniak,et al.  Path-averaged Cn2 estimation using a laser-and-corner-cube system. , 2009, Applied optics.

[70]  T. Hänsch Nobel Lecture: Passion for precision* , 2006 .

[71]  Lowry A. Harper,et al.  Deducing Ground-to-Air Emissions from Observed Trace Gas Concentrations: A Field Trial with Wind Disturbance , 2004 .

[72]  Eben D Thoma,et al.  Assessment of volatile organic compound and hazardous air pollutant emissions from oil and natural gas well pads using mobile remote and on-site direct measurements , 2015, Journal of the Air & Waste Management Association.

[73]  I. Coddington,et al.  Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. , 2007, Physical review letters.

[74]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[75]  A Goldman,et al.  The HITRAN database: 1986 edition. , 1987, Applied optics.

[76]  Kathleen Mottus,et al.  Measuring chemical emissions using open-path Fourier transform infrared (OP-FTIR) spectroscopy and computer-assisted tomography , 2001 .

[77]  Eben D Thoma,et al.  Assessment of methane emissions from oil and gas production pads using mobile measurements. , 2014, Environmental science & technology.

[78]  N. A. Cole,et al.  Methane Emissions from a Beef Cattle Feedyard during Winter and Summer on the Southern High Plains of Texas. , 2014, Journal of environmental quality.

[79]  R. M. Hammaker,et al.  AN INTRODUCTION TO Open-Path FT-IR Atmospheric Monitoring. , 1994, Environmental science & technology.

[80]  R. H. Grant,et al.  Sources of error in open-path FTIR measurements of N2O and CO2 emitted from agricultural fields , 2019, Atmospheric Measurement Techniques.

[81]  T. Flesch,et al.  Comparison of slant open-path flux gradient and static closed chamber techniques to measure soil N2O emissions , 2019, Atmospheric Measurement Techniques.

[82]  B. Drouin,et al.  Speed-dependent Voigt lineshape parameter database from dual frequency comb measurements up to 1305 K. Part I: Pure H2O absorption, 6801-7188 cm-1. , 2018, Journal of quantitative spectroscopy & radiative transfer.

[83]  I. Coddington,et al.  High temperature comparison of the HITRAN2012 and HITEMP2010 water vapor absorption databases to frequency comb measurements , 2017 .

[84]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[85]  Chang-Fu Wu,et al.  Large-scale search method for locating and identifying fugitive emission sources in petrochemical processing areas , 2016 .

[86]  F. Tauser,et al.  Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz , 2000 .

[87]  K. Cossel,et al.  Single-Blind Quantification of Natural Gas Leaks from 1 km Distance Using Frequency Combs. , 2019, Environmental science & technology.

[88]  Theodor W. Hänsch,et al.  Frequency comb spectroscopy , 2019, Nature Photonics.

[89]  Anthony J. Marchese,et al.  Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement methods , 2014 .

[90]  R. H. Grant,et al.  Application of open-path Fourier transform infrared spectroscopy (OP-FTIR) to measure greenhouse gas concentrations from agricultural fields , 2019, Atmospheric Measurement Techniques.

[91]  David Fowler,et al.  Micrometeorological measurements of the urban heat budget and CO2 emissions on a city scale. , 2002, Environmental science & technology.

[92]  Kerry J. Vahala,et al.  Microresonator soliton dual-comb spectroscopy , 2016, Science.

[93]  Scott A. Diddams,et al.  The evolving optical frequency comb [Invited] , 2010 .

[94]  K. Cossel,et al.  Estimating vehicle carbon dioxide emissions from Boulder, Colorado, using horizontal path-integrated column measurements , 2019, Atmospheric chemistry and physics.

[95]  M. Amani,et al.  Probing methane in air with a midinfrared frequency comb source. , 2017, Applied optics.

[96]  Application of Legendre Polynomials Correction Before Component Quantification of Biological Mid-infrared Spectra , 1996 .

[97]  R. H. Grant,et al.  Areal-averaged trace gas emission rates from long-range open-path measurements in stable boundary layer conditions , 2012 .

[98]  James Thomas,et al.  Measurements of methane emissions at natural gas production sites in the United States , 2013, Proceedings of the National Academy of Sciences.

[99]  Derryck T. Reid,et al.  Open-path multi-species remote sensing with a broadband optical parametric oscillator. , 2019, Optics express.

[100]  Ian Coddington,et al.  Optical Frequency Comb Generation based on Erbium Fiber Lasers , 2016 .

[101]  Jonathan Tennyson,et al.  Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report) , 2014, 1409.7782.

[102]  Ming Yan,et al.  Mid-infrared dual-comb spectroscopy with electro-optic modulators , 2017, Light, science & applications.

[103]  S. Schiller,et al.  Spectrometry with frequency combs. , 2002, Optics letters.

[104]  J. Peischl,et al.  Influence of oil and gas emissions on summertime ozone in the Colorado Northern Front Range , 2016 .

[105]  John L. Hall,et al.  Nobel Lecture: Defining and measuring optical frequencies , 2006 .

[106]  A. Fleisher,et al.  Precision spectroscopy of H13CN using a free-running, all-fiber dual electro-optic frequency comb system. , 2018, Optics letters.

[107]  Michael A. Marciniak,et al.  Atmospheric-turbulence-effects correction factors for the laser range equation , 2008 .

[108]  Scott A. Diddams,et al.  Open-air, broad-bandwidth trace gas sensing with a mid-infrared optical frequency comb , 2014 .

[109]  D. Jaffe,et al.  Ozone production from wildfires: A critical review , 2012 .

[110]  Konstantin L. Vodopyanov,et al.  Broadband degenerate OPO for mid-infrared frequency comb generation. , 2011, Optics express.

[111]  Ian Coddington,et al.  Sensitivity of coherent dual-comb spectroscopy. , 2010, Optics express.

[112]  T. Kippenberg,et al.  Nanophotonic Supercontinuum-Based Mid-Infrared Dual-Comb Spectroscopy , 2019, 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC).

[113]  Sho Okubo,et al.  Ultra-broadband dual-comb spectroscopy across 1.0–1.9 µm , 2015, 1507.08006.

[114]  N. A. Cole,et al.  Daily, monthly, seasonal, and annual ammonia emissions from Southern High Plains cattle feedyards. , 2011, Journal of environmental quality.

[115]  Eugene Yee,et al.  Backward-Time Lagrangian Stochastic Dispersion Models and Their Application to Estimate Gaseous Emissions , 1995 .

[116]  D.P. Skinner,et al.  The cepstrum: A guide to processing , 1977, Proceedings of the IEEE.

[117]  A. Fleisher,et al.  Dual electro-optic frequency comb spectroscopy using pseudo-random modulation. , 2019, Optics letters.

[118]  Michal Lipson,et al.  Modelocked mid-infrared frequency combs in a silicon microresonator , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[119]  Comb segmentation spectroscopy for rapid detection of molecular absorption lines. , 2019, Optics express.

[120]  A. Karion,et al.  Bootstrap inversion technique for atmospheric trace gas source detection and quantification using long open-path laser measurements , 2018 .

[121]  Theodor W. Hänsch,et al.  Measuring the frequency of light with mode-locked lasers , 1999 .

[122]  Jae Ho Shin,et al.  Generalized method for the computational phase correction of arbitrary dual comb signals. , 2019, Optics letters.

[123]  Michal Lipson,et al.  Photonic-chip-based frequency combs , 2019, Nature Photonics.

[124]  M. Ohtsu,et al.  Ultrahigh Scanning Speed Optical Coherence Tomography Using Optical Frequency Comb Generators , 2001, CLEO 2001.

[125]  Pedro Martín-Mateos,et al.  Direct hyperspectral dual-comb imaging , 2020, Optica.

[126]  Brian J. Connor,et al.  GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra , 2015 .

[127]  F. Gibert,et al.  2-μm Ho emitter-based coherent DIAL for CO(2) profiling in the atmosphere. , 2015, Optics letters.

[128]  Ming Yan,et al.  Frequency-agile dual-comb spectroscopy , 2016 .

[129]  Gerard Wysocki,et al.  Mid-infrared multiheterodyne spectroscopy with phase-locked quantum cascade lasers , 2017 .

[130]  R. Hanson,et al.  Dual-comb spectroscopy for high-temperature reaction kinetics , 2019, Measurement Science and Technology.

[131]  Thomas K. Allison,et al.  Molecular fingerprinting with bright, broadband infrared frequency combs , 2018 .

[132]  K. Pericleous,et al.  Modelling air quality in street canyons : a review , 2003 .

[133]  D. Griffith,et al.  Long open-path measurements of greenhouse gases in air using near-infrared Fourier transform spectroscopy , 2017 .

[134]  I. Hartl,et al.  Ultrafast Fiber Laser Technology , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[135]  Peter G. Schunemann,et al.  Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators , 2017 .

[136]  Steve Zegelin,et al.  Atmospheric tomography: a Bayesian inversion technique for determining the rate and location of fugitive emissions. , 2012, Environmental science & technology.

[137]  Pablo Acedo,et al.  Dual-Comb Architecture for Fast Spectroscopic Measurements and Spectral Characterization , 2015, IEEE Photonics Technology Letters.

[138]  D. Long,et al.  Observations of Dicke narrowing and speed dependence in air-broadened CO₂ lineshapes near 2.06 μm. , 2014, The Journal of chemical physics.

[139]  P. Ciais,et al.  An attempt at estimating Paris area CO 2 emissions from atmospheric concentration measurements , 2014 .

[140]  P. Crutzen,et al.  Comprehensive laboratory measurements of biomass‐burning emissions: 2. First intercomparison of open‐path FTIR, PTR‐MS, and GC‐MS/FID/ECD , 2004 .

[141]  Gerard Wysocki,et al.  Chirped Laser Dispersion Spectroscopy for Remote Open-Path Trace-Gas Sensing , 2012, Sensors.

[142]  O. T. Denmead,et al.  Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere , 2008, Plant and Soil.

[143]  M. Golling,et al.  Vertical integration of ultrafast semiconductor lasers , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[144]  Yujia Zhang,et al.  Segment-Resolved Gas Concentration Measurements by a Time Domain Multiplexed Dual Comb Method , 2020, Sensors.

[145]  A. Zammit‐Mangion,et al.  Bayesian atmospheric tomography for detection and quantification of methane emissions: application to data from the 2015 Ginninderra release experiment , 2019, Atmospheric Measurement Techniques.

[146]  Anthony J. Marchese,et al.  Reconciling divergent estimates of oil and gas methane emissions , 2015, Proceedings of the National Academy of Sciences.

[147]  Hugo Bergeron,et al.  Synchronization of Clocks Through 12 km of Strongly Turbulent Air Over a City. , 2016, Applied physics letters.

[148]  Esther Baumann,et al.  20 years of developments in optical frequency comb technology and applications , 2019 .

[149]  Pei-Ling Luo Long-wave mid-infrared time-resolved dual-comb spectroscopy of short-lived intermediates. , 2020, Optics letters.

[150]  Fritz Keilmann,et al.  Time-domain mid-infrared frequency-comb spectrometer. , 2004, Optics letters.

[151]  Janusz Murakowski,et al.  Gas-absorption spectroscopy with electronic terahertz techniques , 2000 .

[152]  S. Khalid,et al.  Details of hydrophobic entanglement between small molecules and Braun’s lipoprotein within the cavity of the bacterial chaperone LolA , 2019, Scientific Reports.

[153]  Philippe Ciais,et al.  Demonstration of spatial greenhouse gas mapping using laser absorption spectrometers on local scales , 2017 .

[154]  I. Coddington,et al.  Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path. , 2016, Optica.

[155]  Michal Lipson,et al.  On-chip dual-comb source for spectroscopy , 2016, Science Advances.

[156]  Young-Jin Kim,et al.  Testing of a femtosecond pulse laser in outer space , 2014, Scientific Reports.

[157]  J. D. de Gouw,et al.  Source signature of volatile organic compounds from oil and natural gas operations in northeastern Colorado. , 2013, Environmental science & technology.

[158]  P. Rayner,et al.  Estimates of CO2 fluxes over the City of Cape Town, South Africa, through Bayesian inverse modelling , 2017 .

[159]  V. Ebert,et al.  Time-multiplexed open-path TDLAS spectrometer for dynamic, sampling-free, interstitial H218O and H216O vapor detection in ice clouds , 2015 .

[160]  Jérôme Genest,et al.  Chemical detection with hyperspectral lidar using dual frequency combs. , 2013, Optics express.

[161]  R. Windeler,et al.  Fundamental noise limitations to supercontinuum generation in microstructure fiber. , 2002, Physical review letters.

[162]  Jun Ye,et al.  Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm. , 2009, Optics letters.

[163]  Knight,et al.  Optical frequency synthesizer for precision spectroscopy , 2000, Physical review letters.

[164]  L. Molina,et al.  Sources and sinks of carbon dioxide in a neighborhood of Mexico City , 2014 .

[165]  Daniel B. Holland,et al.  A decade-spanning high-resolution asynchronous optical sampling terahertz time-domain and frequency comb spectrometer. , 2015, The Review of scientific instruments.

[166]  Susan A. Thorneloe,et al.  Open-Path Tunable Diode Laser Absorption Spectroscopy for Acquisition of Fugitive Emission Flux Data , 2005, Journal of the Air & Waste Management Association.

[167]  E. Sorokin,et al.  Ultrabroadband infrared solid-state lasers , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[168]  C. Frankenberg,et al.  The Chlorophyll Fluorescence Imaging Spectrometer (CFIS), mapping far red fluorescence from aircraft , 2018, Remote Sensing of Environment.

[169]  Jérôme Faist,et al.  On-chip mid-infrared and THz frequency combs for spectroscopy , 2019, Applied Physics Letters.

[170]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[171]  I. Coddington,et al.  Coherent dual-comb spectroscopy at high signal-to-noise ratio , 2010 .

[172]  Hall,et al.  Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb , 2000, Physical review letters.

[173]  M. Gorodetsky,et al.  Soliton dual frequency combs in crystalline microresonators. , 2016, Optics letters.

[174]  Xinbai Li,et al.  Towards visible soliton microcomb generation , 2017, Nature Communications.

[175]  William C Swann,et al.  Open-path dual comb spectroscopy to an airborne retroreflector. , 2017, Optica.

[176]  Konstantin L. Vodopyanov,et al.  Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs , 2018 .

[177]  Qing Hu,et al.  Terahertz multiheterodyne spectroscopy using laser frequency combs , 2016, 1604.01048.

[178]  Esther Baumann,et al.  Fast high-resolution spectroscopy of dynamic continuous-wave laser sources , 2010 .

[179]  David J Jones,et al.  Phase stabilization of an octave-spanning Ti:sapphire laser. , 2003, Optics letters.

[180]  D. Bailey,et al.  An open-path tunable diode laser absorption spectrometer for detection of carbon dioxide at the Bonanza Creek Long-Term Ecological Research Site near Fairbanks, Alaska , 2017 .

[181]  Jean-Daniel Deschênes,et al.  Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method. , 2008, Optics express.

[182]  R. Windeler,et al.  Noise amplification during supercontinuum generation in microstructure fiber. , 2003, Optics letters.

[183]  J. Hodges,et al.  Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser. , 2014, Optics letters.

[184]  D. Helmig Air quality impacts from oil and natural gas development in Colorado , 2020 .

[185]  E. K. Webb,et al.  Correction of flux measurements for density effects due to heat and water vapour transfer , 1980 .

[186]  C. Gerbig,et al.  Correcting atmospheric CO2 and CH4 mole fractions obtained with Picarro analyzers for sensitivity of cavity pressure to water vapor , 2018, Atmospheric Measurement Techniques.

[187]  K. Cossel,et al.  Dual-comb spectroscopy with tailored spectral broadening in Si3N4 nanophotonics. , 2018, Optics express.

[188]  C. de Dios,et al.  Electro-optic THz dual-comb architecture for high-resolution, absolute spectroscopy. , 2019, Optics letters.

[189]  Thomas K. Flesch,et al.  Comparison of a simplified micrometeorological mass difference technique and an inverse dispersion technique for estimating methane emissions from small area sources , 2009 .

[190]  R. Perry,et al.  The sources and behaviour of tropospheric anthropogenic volatile hydrocarbons , 1992 .

[191]  Yang Yang,et al.  Computational multiheterodyne spectroscopy , 2016, Science Advances.

[192]  J. Faist,et al.  Single-Shot Sub-microsecond Mid-infrared Spectroscopy on Protein Reactions with Quantum Cascade Laser Frequency Combs. , 2018, Analytical chemistry.

[193]  Xiaoli Sun,et al.  A singular value decomposition framework for retrievals with vertical distribution information from greenhouse gas column absorption spectroscopy measurements , 2018 .

[194]  Markus Brehm,et al.  Frequency-comb infrared spectrometer for rapid, remote chemical sensing. , 2005, Optics express.

[195]  E. Kort,et al.  Diurnal tracking of anthropogenic CO 2 emissions in the Los Angeles basin megacity during spring 2010 , 2013 .

[196]  B. Sive,et al.  Source characterization of volatile organic compounds in the Colorado Northern Front Range Metropolitan Area during spring and summer 2015 , 2017 .

[197]  D. Blake,et al.  Atmospheric Implications of Large C2‐C5 Alkane Emissions From the U.S. Oil and Gas Industry , 2019, Journal of geophysical research. Atmospheres : JGR.

[198]  S. Hunsche,et al.  Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory , 1999 .

[199]  R. Fante Electromagnetic beam propagation in turbulent media , 1975, Proceedings of the IEEE.

[200]  R. Windeler,et al.  Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber , 2003 .

[201]  Generalized flux-gradient technique pairing line-average concentrations on vertically separated paths , 2016 .

[202]  I. Coddington,et al.  Dual-comb spectroscopy. , 2016, Optica.

[203]  S. Bhatia,et al.  The Ginninderra CH4 and CO2 release experiment: An evaluation of gas detection and quantification techniques , 2018 .

[204]  J. Köster,et al.  Field measurement of ammonia emissions after nitrogen fertilization—A comparison between micrometeorological and chamber methods , 2015 .

[205]  Esther Baumann,et al.  Fully self-referenced frequency comb consuming 5 watts of electrical power , 2018, OSA Continuum.

[206]  Jun Ye,et al.  Cavity-enhanced direct frequency comb spectroscopy: technology and applications. , 2010, Annual review of analytical chemistry.

[207]  R. T. Ku,et al.  Long-path monitoring of atmospheric carbon monoxide with a tunable diode laser system. , 1975, Applied optics.

[208]  S. Conley,et al.  Temporal Variability of Emissions Revealed by Continuous, Long-Term Monitoring of an Underground Natural Gas Storage Facility. , 2020, Environmental science & technology.

[209]  L. Andrews,et al.  Theory of optical scintillation: Gaussian-beam wave model , 2001 .

[210]  John D. Wilson,et al.  Influence of source–sensor geometry on multi-source emission rate estimates , 2008 .

[211]  Ari Karppinen,et al.  Uncertainty of eddy covariance flux measurements over an urban area based on two towers , 2018, Atmospheric Measurement Techniques.

[212]  Chang-Fu Wu,et al.  Characterizing and locating air pollution sources in a complex industrial district using optical remote sensing technology and multivariate statistical modeling , 2014, Environmental Science and Pollution Research.

[213]  T. Flesch,et al.  Micro-meteorological methods for estimating surface exchange with a disturbed windflow , 2001 .

[214]  P. Saarinen,et al.  Multicomponent Analysis of FT-IR Spectra , 1991 .

[215]  Andrew J. Metcalf,et al.  Ultrafast electro-optic light with subcycle control , 2017, Science.

[216]  O. Hellmig,et al.  Space-borne frequency comb metrology , 2016 .

[217]  Jochen Albrecht,et al.  The geography of global urban greenhouse gas emissions: an exploratory analysis , 2013, Climatic Change.

[218]  Esther Baumann,et al.  Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust , 2017 .

[219]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[220]  K. Cossel,et al.  Accurate frequency referencing for fieldable dual-comb spectroscopy. , 2016, Optics express.

[221]  C E Kolb,et al.  Development of atmospheric tracer methods to measure methane emissions from natural gas facilities and urban areas. , 1995, Environmental science & technology.

[222]  D. Plusquellic,et al.  Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6  μm. , 2016, Applied optics.

[223]  Gerard Wysocki,et al.  Computational coherent averaging for free-running dual-comb spectroscopy. , 2018, Optics express.

[224]  K. Vahala,et al.  Coherent ultra-violet to near-infrared generation in silica ridge waveguides , 2017, Nature Communications.

[225]  Jean-Daniel Deschênes,et al.  Continuous real-time correction and averaging for frequency comb interferometry. , 2012, Optics express.

[226]  Daniel Mendoza,et al.  Simulating atmospheric tracer concentrations for spatially distributed receptors: updates to the Stochastic Time-Inverted Lagrangian Transport model's R interface (STILT-R version 2) , 2018, Geoscientific Model Development.

[227]  D. F. Natschke,et al.  Field evaluation of a method for estimating gaseous fluxes from area sources using open-path Fourier transform infrared. , 2001, Environmental science & technology.

[228]  J. Hodges,et al.  The air-broadened, near-infrared CO2 line shape in the spectrally isolated regime: evidence of simultaneous Dicke narrowing and speed dependence. , 2011, The Journal of chemical physics.

[229]  E. Santos,et al.  Estimating methane emissions from beef cattle in a feedlot using the eddy covariance technique and footprint analysis , 2017, Agricultural and Forest Meteorology.

[230]  Valentin Gapontsev,et al.  Middle-IR frequency comb based on Cr:ZnS laser. , 2019, Optics express.

[231]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[232]  C W Oates,et al.  Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser. , 2001, Physical review letters.

[233]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[234]  Chi-Yu Liu,et al.  Visible to near-infrared octave spanning supercontinuum generation in tantalum pentoxide (Ta2O5) air-cladding waveguide. , 2019, Optics letters.

[235]  D. Bon,et al.  Exposures and Health Risks from Volatile Organic Compounds in Communities Located near Oil and Gas Exploration and Production Activities in Colorado (U.S.A.) , 2018, International journal of environmental research and public health.

[236]  Mattias Beck,et al.  Quantum Cascade Laser Frequency Combs , 2015, 1510.09075.

[237]  Günter Steinmeyer,et al.  Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation , 1999 .

[238]  D. Lyon,et al.  Spatiotemporal Variability of Methane Emissions at Oil and Natural Gas Operations in the Eagle Ford Basin. , 2017, Environmental science & technology.

[239]  A. Dreizler,et al.  Robust, spatially scanning, open-path TDLAS hygrometer using retro-reflective foils for fast tomographic 2-D water vapor concentration field measurements , 2014 .

[240]  J W Nicholson,et al.  Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz. , 2012, Optics letters.

[241]  T. Hänsch,et al.  Adaptive real-time dual-comb spectroscopy , 2012, Nature Communications.

[242]  Esther Baumann,et al.  High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm , 2017, 1709.07105.

[243]  Kevin R. Gurney,et al.  Toward quantification and source sector identification of fossil fuel CO2 emissions from an urban area: Results from the INFLUX experiment , 2015 .

[244]  Jun Ye,et al.  Broadband molecular spectroscopy with optical frequency combs , 2019, Journal of Molecular Spectroscopy.

[245]  D. J. Ruiz,et al.  A comprehensive quantification of global nitrous oxide sources and sinks , 2020, Nature.

[246]  J. Hodges,et al.  Coherent cavity-enhanced dual-comb spectroscopy. , 2016, Optics express.

[247]  D. Griffith,et al.  Agricultural gas emissions during the spring thaw: Applying a new measurement technique , 2016 .