Applying Belief Revision to Case-Based Reasoning

Adaptation is a task of case-based reasoning (CBR) that aims at modifying a case to solve a new problem. Now, belief revision deals also about modifications. This chapter studies how some results about revision can be applied to formalize adaptation and, more widely, CBR. Revision operators based on distances are defined in formalisms frequently used in CBR and applied to define an adaptation operator that takes into account the domain knowledge and the adaptation knowledge. This approach to adaptation is shown to generalize some other approaches to adaptation, such as rule-based adaptation.

[1]  Jean Lieber Application of the Revision Theory to Adaptation in Case-Based Reasoning: The Conservative Adaptation , 2007, ICCBR.

[2]  Souhila Kaci,et al.  A Syntactical Approach to Qualitative Constraint Networks Merging , 2010, LPAR.

[3]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[4]  James A. Hendler,et al.  Debugging unsatisfiable classes in OWL ontologies , 2005, J. Web Semant..

[5]  Jean Lieber,et al.  Belief Merging-Based Case Combination , 2009, ICCBR.

[6]  DURATIONNETWORKArun K. Pujari,et al.  Indu: an Interval & Duration Network , 2000 .

[7]  Barry Smyth,et al.  Using adaptation knowledge to retrieve and adapt design cases , 1996, Knowl. Based Syst..

[8]  Christopher K. Riesbeck,et al.  Inside Case-Based Reasoning , 1989 .

[9]  Susan Craw,et al.  Using Case-Base Data to Learn Adaptation Knowledge for Design , 2001, IJCAI.

[10]  Gérard Ligozat,et al.  On Generalized Interval Calculi , 1991, AAAI.

[11]  J. Carbonell,et al.  Learning by Analogy: Formulating and Generalizing Plans from Past Experience , 1983 .

[12]  Abdul Sattar,et al.  INDU: An Interval and Duration Network , 1999, Australian Joint Conference on Artificial Intelligence.

[13]  Ralph Bergmann,et al.  Applying Recursive CBR for the Custumization of Structured Products in an Electronic Shop , 2000, EWCBR.

[14]  Ralph Bergmann,et al.  Computer Cooking Contest , 2008, Künstliche Intell..

[15]  Ralph Bergmann,et al.  An Investigation of Generalized Cases , 2003, ICCBR.

[16]  Janet L. Kolodner,et al.  Case-Based Reasoning , 1989, IJCAI 1989.

[17]  Mathieu d'Aquin,et al.  Case Base Mining for Adaptation Knowledge Acquisition , 2007, IJCAI.

[18]  Hirofumi Katsuno,et al.  Propositional Knowledge Base Revision and Minimal Change , 1991, Artif. Intell..

[19]  Sébastien Konieczny,et al.  DA2 merging operators , 2004, Artif. Intell..

[20]  Hala Skaf-Molli,et al.  TAAABLE 3: Adaptation of ingredient quantities and of textual preparations , 2010, ICCBR 2010.

[21]  James F. Allen An Interval-Based Representation of Temporal Knowledge , 1981, IJCAI.

[22]  Susan Craw,et al.  Learning adaptation knowledge to improve case-based reasoning , 2006, Artif. Intell..

[23]  David C. Wilson,et al.  Acquiring Case Adaptation Knowledge: A Hybrid Approach , 1996, AAAI/IAAI, Vol. 1.

[24]  Mukesh Dalal,et al.  Investigations into a Theory of Knowledge Base Revision , 1988, AAAI.

[25]  Florence Le Ber,et al.  Adapting Spatial and Temporal Cases , 2012, ICCBR.

[26]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[27]  Amedeo Napoli,et al.  Correct and Complete Retrieval for Case-Based Problem-Solving , 1998, ECAI.

[28]  Jean Lieber,et al.  An Algorithm for Adapting Cases Represented in ALC , 2011, IJCAI.

[29]  Jaime G. Carbonell,et al.  Derivational analogy: a theory of reconstructive problem solving and expertise acquisition , 1993 .

[30]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[31]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[32]  Grigoris Antoniou,et al.  On Applying the AGM Theory to DLs and OWL , 2005, SEMWEB.

[33]  John R. Anderson,et al.  MACHINE LEARNING An Artificial Intelligence Approach , 2009 .