A nearly best-possible approximation algorithm for node-weighted Steiner trees

We give the first approximation algorithm for the node-weighted Steiner tree problem. Its performance guarantee is within a constant factor of the best possible unless $\tilde P \supseteq NP$. Our algorithm generalizes to handle other network design problems.

[1]  S. Louis Hakimi,et al.  Steiner's problem in graphs and its implications , 1971, Networks.

[2]  Arie Segev,et al.  The node-weighted steiner tree problem , 1987, Networks.

[3]  Gabriele Reich,et al.  Beyond Steiner's Problem: A VLSI Oriented Generalization , 1989, WG.

[4]  Kurt Mehlhorn,et al.  A Faster Approximation Algorithm for the Steiner Problem in Graphs , 1988, Inf. Process. Lett..

[5]  László Lovász,et al.  On the ratio of optimal integral and fractional covers , 1975, Discret. Math..

[6]  Jack Edmonds,et al.  Matching, Euler tours and the Chinese postman , 1973, Math. Program..

[7]  J. Plesník A bound for the Steiner tree problem in graphs , 1981 .

[8]  Vasek Chvátal,et al.  A Greedy Heuristic for the Set-Covering Problem , 1979, Math. Oper. Res..

[9]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[10]  Carsten Lund,et al.  On the hardness of approximating minimization problems , 1994, JACM.

[11]  S. E. Dreyfus,et al.  The steiner problem in graphs , 1971, Networks.

[12]  Pawel Winter,et al.  Steiner problem in networks: A survey , 1987, Networks.

[13]  V. J. Rayward-Smith,et al.  The computation of nearly minimal Steiner trees in graphs , 1983 .

[14]  R. Ravi,et al.  When trees collide: an approximation algorithm for the generalized Steiner problem on networks , 1991, STOC '91.

[15]  David P. Williamson,et al.  A general approximation technique for constrained forest problems , 1992, SODA '92.

[16]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.