Simultaneous model identification and optimization in presence of model-plant mismatch

Abstract In a standard optimization approach, the underlying process model is first identified at a given set of operating conditions and this updated model is, then, used to calculate the optimal conditions for the process. This “two-step” procedure can be repeated iteratively by conducting new experiments at optimal operating conditions, based on previous iterations, followed by re-identification and re-optimization until convergence is reached. However, when there is a model-plant mismatch, the set of parameter estimates that minimizes the prediction error in the identification problem may not predict the gradients of the optimization objective accurately. As a result, convergence of the “two-step” iterative approach to a process optimum cannot be guaranteed. This paper presents a new methodology where the model outputs are corrected explicitly for the mismatch such that, with the updated parameter estimates the identification and optimization objectives are properly reconciled. With the proposed corrections being progressively integrated over the iterations, the algorithm has guaranteed convergence to the process optimum and also, upon convergence, the final corrected model predicts the process behavior accurately. The proposed methodology is illustrated in a run-to-run optimization framework with a fed-batch bioprocess as a case study.

[1]  Max Donath,et al.  American Control Conference , 1993 .

[2]  Dominique Bonvin,et al.  Modifier Adaptation for Run-To-Run Optimization of Dynamic Processes , 2011 .

[3]  Bala Srinivasan,et al.  Interplay between identification and optimization in run-to-run optimization schemes , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[4]  Leandro Pardo,et al.  On the applications of divergence type measures in testing statistical hypotheses , 1994 .

[5]  Eva Balsa-Canto,et al.  Dynamic optimization of bioprocesses: efficient and robust numerical strategies. , 2005, Journal of biotechnology.

[6]  Dmitry I. Belov,et al.  Distributions of the Kullback-Leibler divergence with applications. , 2011, The British journal of mathematical and statistical psychology.

[7]  Ernesto C. Martínez,et al.  Dynamic optimization of bioreactors using probabilistic tendency models and Bayesian active learning , 2013, Comput. Chem. Eng..

[8]  D. Rippin,et al.  Implementation of Adaptive Optimal Operation for a Semi-Batch Reaction System , 1998 .

[9]  Sebastian Engell,et al.  Iterative set-point optimization of batch chromatography , 2005, Comput. Chem. Eng..

[10]  Urmila M. Diwekar,et al.  Robust design using an efficient sampling technique , 1996 .

[11]  P. D. Roberts,et al.  An algorithm for steady-state system optimization and parameter estimation , 1979 .

[12]  D. Bonvin,et al.  Optimization of batch reactor operation under parametric uncertainty — computational aspects , 1995 .

[13]  Babu Joseph,et al.  On-line optimization using a two-phase approach: an application study , 1987 .

[14]  Mukul Agarwal,et al.  Batch unit optimization with imperfect modelling: a survey , 1994 .

[15]  M. Reuss,et al.  A mechanistic model for penicillin production , 2007 .

[16]  Piotr Tatjewski,et al.  ITERATIVE OPTIMIZING SET-POINT CONTROL – THE BASIC PRINCIPLE REDESIGNED , 2002 .

[17]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[18]  J. Rawlings,et al.  Feedback control of chemical processes using on-line optimization techniques , 1990 .

[19]  Gülnur Birol,et al.  A modular simulation package for fed-batch fermentation: penicillin production , 2002 .

[20]  Alejandro G. Marchetti,et al.  A new dual modifier-adaptation approach for iterative process optimization with inaccurate models , 2013, Comput. Chem. Eng..

[21]  Giorgio Battistelli,et al.  Model-free Adaptive Switching Control of Uncertain Time-Varying Plants , 2011 .

[22]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[23]  Dominique Bonvin,et al.  Adaptation strategies for real-time optimization , 2009, Comput. Chem. Eng..

[24]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[25]  Lazaros G. Papageorgiou,et al.  Robustness metrics for dynamic optimization models under parameter uncertainty , 1998 .

[26]  Jasdeep S. Mandur,et al.  A Robust algorithm for Run-to-run Optimization of Batch Processes , 2013 .

[27]  Dominique Bonvin,et al.  Modifier-adaptation methodology for real-time optimization , 2009 .

[28]  Dominique Bonvin,et al.  A Dual Modifier-Adaptation Approach for Real-Time Optimization , 2010 .

[29]  Richard D. Braatz,et al.  Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis , 2004 .

[30]  Dominique Bonvin,et al.  Interplay between Identification and Optimization in Run-to-run Schemes , 2002 .

[31]  David W. Bacon,et al.  Modeling Ethylene/Butene Copolymerization with Multi‐site Catalysts: Parameter Estimability and Experimental Design , 2003 .

[32]  Thomas E Marlin,et al.  Process Control , 1995 .

[33]  Dominique Bonvin,et al.  Modifier Adaptation for Run-to-Run Optimization of Transient Processes , 2011 .