Liquid metal-based synthesis of high performance monolayer SnS piezoelectric nanogenerators

The predicted strong piezoelectricity for monolayers of group IV monochalcogenides, together with their inherent flexibility, makes them likely candidates for developing flexible nanogenerators. Within this group, SnS is a potential choice for such nanogenerators due to its favourable semiconducting properties. To date, access to large-area and highly crystalline monolayer SnS has been challenging due to the presence of strong inter-layer interactions by the lone-pair electrons of S. Here we report single crystal across-the-plane and large-area monolayer SnS synthesis using a liquid metal-based technique. The characterisations confirm the formation of atomically thin SnS with a remarkable carrier mobility of ~35 cm 2 V −1 s −1 and piezoelectric coefficient of ~26 pm V −1 . Piezoelectric nanogenerators fabricated using the SnS monolayers demonstrate a peak output voltage of ~150 mV at 0.7% strain. The stable and flexible monolayer SnS can be implemented into a variety of systems for efficient energy harvesting. The presence of strong inter-layer interactions has hindered the synthesis efforts towards large-area and highly crystalline monolayer SnS. Here, the authors report synthesis of large-area monolayer SnS using a liquid metal-based technique, and fabricate piezoelectric nano-generators with average peak output voltage of 150 mV at 0.7% strain.

[1]  M. Ohring Chapter 6 – Characterization of Thin Films , 1991 .

[2]  Kourosh Kalantar-Zadeh,et al.  Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals , 2017, Nature Communications.

[3]  Rui He,et al.  Screening limited switching performance of multilayer 2D semiconductor FETs: the case for SnS. , 2016, Nanoscale.

[4]  E. H. Rhoderick,et al.  Metal–Semiconductor Contacts , 1979 .

[5]  S. Haigh,et al.  Tin(II) Sulfide (SnS) Nanosheets by Liquid-Phase Exfoliation of Herzenbergite: IV-VI Main Group Two-Dimensional Atomic Crystals. , 2015, Journal of the American Chemical Society.

[6]  Tae Yun Kim,et al.  Reliable Piezoelectricity in Bilayer WSe2 for Piezoelectric Nanogenerators , 2017, Advanced materials.

[7]  N. Cabrera,et al.  Theory of the oxidation of metals , 1949 .

[8]  Lei Wang,et al.  Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses. , 2016, Nanoscale.

[9]  M. Ohring The Materials Science of Thin Films , 1991 .

[10]  A. Neto,et al.  Enhanced piezoelectricity and modified dielectric screening of two-dimensional group-IV monochalcogenides , 2015, 1511.01645.

[11]  Omid Kavehei,et al.  A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides , 2017, Science.

[12]  Yong Ding,et al.  Piezotronic effect in solution-grown p-type ZnO nanowires and films. , 2013, Nano letters.

[13]  Aron Walsh,et al.  Electronic Structure and Defect Physics of Tin Sulfides: SnS, Sn 2 S 3 , and Sn S 2 , 2016 .

[14]  K. Nagashio,et al.  Self-passivated ultra-thin SnS layers via mechanical exfoliation and post-oxidation. , 2018, Nanoscale.

[15]  T. J. Whittles,et al.  Band Alignments, Valence Bands, and Core Levels in the Tin Sulfides SnS, SnS2, and Sn2S3: Experiment and Theory , 2016 .

[16]  X. Lu,et al.  Electrostatic-free piezoresponse force microscopy , 2017, Scientific Reports.

[17]  I. Lefebvre,et al.  Electronic structure of tin monochalcogenides from SnO to SnTe , 1998 .

[18]  Yunlong Zi,et al.  Nanogenerators: An emerging technology towards nanoenergy , 2017 .

[19]  Xudong Wang Piezotronics: A new field of strain-engineered functional semiconductor devices , 2013 .

[20]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[21]  Zhong Lin Wang,et al.  Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics , 2014, Nature.

[22]  Benjamin J. Carey,et al.  Printing two-dimensional gallium phosphate out of liquid metal , 2018, Nature Communications.

[23]  J. Bell,et al.  Experiment and Theory , 1968 .

[24]  Huaiyi Ding,et al.  Revealing anisotropy and thickness dependence of Raman spectra for SnS flakes , 2017 .

[25]  Yi Xie,et al.  All‐Surface‐Atomic‐Metal Chalcogenide Sheets for High‐Efficiency Visible‐Light Photoelectrochemical Water Splitting , 2014 .

[26]  Li Yang,et al.  Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS , 2015, 1508.06222.

[27]  Evan J. Reed,et al.  Intrinsic Piezoelectricity in Two-Dimensional Materials , 2012 .

[28]  O. Magnussen,et al.  The Atomic scale structure of liquid metal-electrolyte interfaces. , 2016, Nanoscale.

[29]  Li Yang,et al.  Giant piezoelectricity of monolayer group IV monochalcogenides. , 2016 .

[30]  Myoung-Jae Lee,et al.  Deterministic Two-Dimensional Polymorphism Growth of Hexagonal n-Type SnS₂ and Orthorhombic p-Type SnS Crystals. , 2015, Nano letters.

[31]  Kang Hyuck Lee,et al.  Point‐Defect‐Passivated MoS2 Nanosheet‐Based High Performance Piezoelectric Nanogenerator , 2018, Advanced materials.

[32]  F. Fan,et al.  Flexible Nanogenerators for Energy Harvesting and Self‐Powered Electronics , 2016, Advanced materials.

[33]  A. Greentree,et al.  Wafer-Scale Synthesis of Semiconducting SnO Monolayers from Interfacial Oxide Layers of Metallic Liquid Tin. , 2017, ACS nano.

[34]  Sihong Wang,et al.  A Hybrid Piezoelectric Structure for Wearable Nanogenerators , 2012, Advanced materials.

[35]  Wanchul Seung,et al.  Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators , 2016 .