Quantum codes from skew constacyclic codes over the ring Fq[u, v]∕〈u2-1, v2-1, uv-vu〉

Abstract In this paper, we study quantum error-correcting codes from skew constacyclic codes over the ring R = F q [ u , v ] 〈 u 2 − 1 , v 2 − 1 , u v − v u 〉 , where q = p m for any odd prime p and positive integer m . We decompose skew constacyclic codes over the ring R as a direct sum of skew constacyclic codes over F q . Self-dual skew constacyclic codes over the ring R are characterized. Necessary and sufficient conditions for skew negacyclic and skew constacyclic codes to be dual-containing are obtained. As an application, we construct new quantum error-correcting codes from skew constacyclic codes over F q .

[1]  Songsak Sriboonchitta,et al.  Skew Constacyclic Codes over Finite Fields and Finite Chain Rings , 2016 .

[2]  Reginaldo Palazzo Júnior,et al.  Constructions of new families of nonbinary CSS codes , 2010, Discret. Math..

[3]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[4]  Songsak Sriboonchitta,et al.  A class of linear codes of length 2 over finite chain rings , 2019, Journal of Algebra and Its Applications.

[5]  Patanee Udomkavanich,et al.  Skew constacyclic codes over finite chain rings , 2010, Adv. Math. Commun..

[6]  Ali Ghrayeb,et al.  On the Construction of Skew Quasi-Cyclic Codes , 2008, IEEE Transactions on Information Theory.

[7]  Songsak Sriboonchitta,et al.  Type 2 constacyclic codes over F2m[u]∕〈u3〉 of oddly even length , 2019, Discret. Math..

[8]  Patrick Solé,et al.  Skew constacyclic codes over Galois rings , 2008, Adv. Math. Commun..

[9]  Irfan Siap,et al.  ON QUANTUM CODES FROM CYCLIC CODES OVER A CLASS OF NONCHAIN RINGS , 2016 .

[10]  Mohammad Ashraf,et al.  On skew cyclic codes over F3 + vF3 , 2014, Int. J. Inf. Coding Theory.

[11]  Jian Gao,et al.  New non-binary quantum codes from constacyclic codes over $ \mathbb{F}_q[u, v]/\langle u^{2}-1, v^{2}-v, uv-vu\rangle $ , 2019, Adv. Math. Commun..

[12]  Songsak Sriboonchitta,et al.  On a Class of Constacyclic Codes of Length 4ps over Fpm[u]〈 ua 〉 , 2019, Algebra Colloquium.

[13]  Wenping Ma,et al.  QUANTUM CODES FROM CYCLIC CODES OVER FINITE RING , 2009 .

[14]  D. Gottesman An Introduction to Quantum Error Correction , 2000, quant-ph/0004072.

[15]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[16]  Felix Ulmer,et al.  Coding with skew polynomial rings , 2009, J. Symb. Comput..

[17]  Mohammad Ashraf,et al.  Quantum codes from cyclic codes over the ring Fp[u]/〈u3 − u〉 , 2019 .

[18]  Songsak Sriboonchitta,et al.  Cyclic codes over the ring GR(pe, m)[u]∕〈uk〉 , 2020, Discret. Math..

[19]  Songsak Sriboonchitta,et al.  On the symbol-pair distances of repeated-root constacyclic codes of length 2ps , 2019, Discret. Math..

[20]  Taher Abualrub,et al.  Skew cyclic codes of arbitrary length , 2011, Int. J. Inf. Coding Theory.

[21]  Hai Q. Dinh,et al.  An explicit representation and enumeration for self-dual cyclic codes over F2m+uF2m of length 2s , 2019, Discret. Math..

[22]  Mohammad Ashraf,et al.  Quantum codes over Fp from cyclic codes over Fp[u, v]/〈u2 − 1, v3 − v, uv − vu〉 , 2018, Cryptography and Communications.

[23]  Felix Ulmer,et al.  Skew-cyclic codes , 2006, Applicable Algebra in Engineering, Communication and Computing.

[24]  Songsak Sriboonchitta,et al.  On the Hamming distances of repeated-root constacyclic codes of length 4ps , 2019, Discret. Math..

[25]  Maheshanand Bhaintwal Skew quasi-cyclic codes over Galois rings , 2012, Des. Codes Cryptogr..

[26]  Ting Yao,et al.  Skew Cyclic codes over Fq+u\Fq+vFq+uvFq , 2015, ArXiv.

[27]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[28]  Xueliang Li,et al.  Binary Construction of Quantum Codes of Minimum Distance Three and Four , 2004, IEEE Trans. Inf. Theory.

[29]  O. Ore Theory of Non-Commutative Polynomials , 1933 .

[30]  Songsak Sriboonchitta,et al.  A class of repeated-root constacyclic codes over 𝔽pm[u]/〈ue〉 of Type 2 , 2019, Finite Fields Their Appl..

[31]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[32]  T. Beth,et al.  On optimal quantum codes , 2003, quant-ph/0312164.

[33]  Songsak Sriboonchitta,et al.  Constacyclic codes over finite commutative semi-simple rings , 2017, Finite Fields Their Appl..

[34]  Hai Q. Dinh,et al.  Construction and enumeration for self-dual cyclic codes of even length over F2m + uF2m , 2020, Finite Fields Their Appl..

[35]  Hai Q. Dinh,et al.  Structure of some classes of repeated-root constacyclic codes of length 2Kℓmpn , 2019, Discret. Math..

[36]  Mohammad Ashraf,et al.  Construction of quantum codes from cyclic codes over Fp + vFp , 2015, Int. J. Inf. Coding Theory.

[37]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[38]  Yasemin Cengellenmis,et al.  On quantum codes obtained from cyclic codes over A2 , 2015 .

[39]  B. R. McDonald Finite Rings With Identity , 1974 .

[40]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[41]  Mohammad Ashraf,et al.  On skew cyclic codes over a semi-local ring , 2015, Discret. Math. Algorithms Appl..

[42]  Mohammad Ashraf,et al.  Quantum codes from cyclic codes over $$F_q+uF_q+vF_q+uvF_q$$Fq+uFq+vFq+uvFq , 2016, Quantum Inf. Process..

[43]  Habibul Islam,et al.  Skew cyclic and skew (α1 + uα2 + vα3 + uvα4)-constacyclic codes over Fq + uFq + vFq + uvFq , 2018, Int. J. Inf. Coding Theory.

[44]  Xiaoqiang Wang,et al.  Optimal b-symbol constacyclic codes with respect to the Singleton bound , 2019, Journal of Algebra and Its Applications.