Chaotic Braided Solutions via Rigorous Numerics: Chaos in the Swift-Hohenberg Equation

We prove that the stationary Swift–Hohenberg equation has chaotic dynamics on a critical energy level for a large (continuous) range of parameter values. The first step of the method relies on a computer assisted, rigorous, continuation method to prove the existence of a periodic orbit with certain geometric properties. The second step is topological: we use this periodic solution as a skeleton, through which we braid other solutions, thus forcing the existence of infinitely many braided periodic orbits. A semiconjugacy to a subshift of finite type shows that the dynamics is chaotic.

[1]  E. Knobloch,et al.  Localized states in the generalized Swift-Hohenberg equation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  B. Buffoni Periodic and homoclinic orbits for Lorentz-Lagrangian systems via variational methods , 1996 .

[3]  Alan R. Champneys,et al.  Homoclinic orbits in reversible systems and their applications in mechanics , 1998 .

[4]  Konstantin Mischaikow,et al.  Rigorous Numerics for Partial Differential Equations: The Kuramoto—Sivashinsky Equation , 2001, Found. Comput. Math..

[5]  Nobito Yamamoto,et al.  A Numerical Verification Method for Solutions of Boundary Value Problems with Local Uniqueness by Banach's Fixed-Point Theorem , 1998 .

[6]  Konstantin Mischaikow,et al.  Validated Continuation for Equilibria of PDEs , 2007, SIAM J. Numer. Anal..

[7]  M. Gameiro,et al.  Topological Horseshoes of Traveling Waves for a Fast–Slow Predator–Prey System , 2007 .

[8]  J. Kwapisz,et al.  Homotopy Classes for Stable Periodic and Chaotic¶Patterns in Fourth-Order Hamiltonian Systems , 2000 .

[9]  J. Swift,et al.  Hydrodynamic fluctuations at the convective instability , 1977 .

[10]  W. Tucker The Lorenz attractor exists , 1999 .

[11]  Alan R. Champneys,et al.  Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system , 1996 .

[12]  G. J. van den Berg,et al.  Stable patterns for fourth-order parabolic equations , 2002 .

[13]  A. Szymczak The Conley index and symbolic dynamics , 1996 .

[14]  William C. Troy,et al.  Chaotic Spatial Patterns Described by the Extended Fisher–Kolmogorov Equation , 1996 .

[15]  W. Saarloos Front propagation into unstable states , 2003, cond-mat/0308540.

[16]  Konstantin Mischaikow,et al.  Validated continuation over large parameter ranges for equilibria of PDEs , 2008, Math. Comput. Simul..

[17]  Sarah Day A rigorous numerical method in infinite dimensions , 2003 .

[18]  William D. Kalies,et al.  MULTITRANSITION HOMOCLINIC AND HETEROCLINIC SOLUTIONS OF THE EXTENDED FISHER-KOLMOGOROV EQUATION , 1996 .

[19]  Dewel,et al.  Pattern selection in the generalized Swift-Hohenberg model. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Konstantin Mischaikow,et al.  A Rigorous Numerical Method for the Global Analysis of Infinite-Dimensional Discrete Dynamical Systems , 2004, SIAM J. Appl. Dyn. Syst..

[21]  Gianni Arioli,et al.  Symbolic Dynamics for the Hénon–Heiles Hamiltonian on the Critical Level , 2001 .

[22]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[23]  J. Kwapisz,et al.  Homotopy Classes for Stable Connections between Hamiltonian Saddle-Focus Equilibria , 1998 .

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  D. Chillingworth DYNAMICAL SYSTEMS: STABILITY, SYMBOLIC DYNAMICS AND CHAOS , 1998 .

[26]  L. A. Peletier,et al.  Global Branches of Multi-Bump Periodic Solutions of the Swift-Hohenberg Equation , 2001 .

[27]  L. Peletier,et al.  Spatial Patterns: Higher Order Models in Physics and Mechanics , 2001 .

[28]  Konstantin Mischaikow,et al.  Rigorous Numerics for Global Dynamics: A Study of the Swift-Hohenberg Equation , 2005, SIAM J. Appl. Dyn. Syst..

[29]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[30]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .

[31]  Mark A. Peletier,et al.  Centrum Voor Wiskunde En Informatica Reportrapport Sequential Buckling: a Variational Analysis Sequential Buckling: a Variational Analysis , 2022 .

[32]  R. Vandervorst,et al.  Second order Lagrangian Twist systems: simple closed characteristics , 2001 .

[33]  D. Wilczak Chaos in the Kuramoto–Sivashinsky equations—a computer-assisted proof , 2003 .

[34]  J. F. Toland,et al.  Global Existence of Homoclinic and Periodic Orbits for a Class of Autonomous Hamiltonian Systems , 1995 .

[35]  K. Mischaikow,et al.  Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.

[36]  Konstantin Mischaikow,et al.  Global smooth solution curves using rigorous branch following , 2010, Math. Comput..

[37]  R. Ghrist,et al.  Morse theory on spaces of braids and Lagrangian dynamics , 2001, math/0105082.

[38]  G. Hargreaves Interval Analysis in Matlab , 2002 .

[39]  W. Thurston On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .

[40]  June-Gi Kim HOMOCLINIC ORBITS FOR HAMILTONIAN SYSTEMS , 1995 .