Chaotic Braided Solutions via Rigorous Numerics: Chaos in the Swift-Hohenberg Equation
暂无分享,去创建一个
[1] E. Knobloch,et al. Localized states in the generalized Swift-Hohenberg equation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[2] B. Buffoni. Periodic and homoclinic orbits for Lorentz-Lagrangian systems via variational methods , 1996 .
[3] Alan R. Champneys,et al. Homoclinic orbits in reversible systems and their applications in mechanics , 1998 .
[4] Konstantin Mischaikow,et al. Rigorous Numerics for Partial Differential Equations: The Kuramoto—Sivashinsky Equation , 2001, Found. Comput. Math..
[5] Nobito Yamamoto,et al. A Numerical Verification Method for Solutions of Boundary Value Problems with Local Uniqueness by Banach's Fixed-Point Theorem , 1998 .
[6] Konstantin Mischaikow,et al. Validated Continuation for Equilibria of PDEs , 2007, SIAM J. Numer. Anal..
[7] M. Gameiro,et al. Topological Horseshoes of Traveling Waves for a Fast–Slow Predator–Prey System , 2007 .
[8] J. Kwapisz,et al. Homotopy Classes for Stable Periodic and Chaotic¶Patterns in Fourth-Order Hamiltonian Systems , 2000 .
[9] J. Swift,et al. Hydrodynamic fluctuations at the convective instability , 1977 .
[10] W. Tucker. The Lorenz attractor exists , 1999 .
[11] Alan R. Champneys,et al. Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system , 1996 .
[12] G. J. van den Berg,et al. Stable patterns for fourth-order parabolic equations , 2002 .
[13] A. Szymczak. The Conley index and symbolic dynamics , 1996 .
[14] William C. Troy,et al. Chaotic Spatial Patterns Described by the Extended Fisher–Kolmogorov Equation , 1996 .
[15] W. Saarloos. Front propagation into unstable states , 2003, cond-mat/0308540.
[16] Konstantin Mischaikow,et al. Validated continuation over large parameter ranges for equilibria of PDEs , 2008, Math. Comput. Simul..
[17] Sarah Day. A rigorous numerical method in infinite dimensions , 2003 .
[18] William D. Kalies,et al. MULTITRANSITION HOMOCLINIC AND HETEROCLINIC SOLUTIONS OF THE EXTENDED FISHER-KOLMOGOROV EQUATION , 1996 .
[19] Dewel,et al. Pattern selection in the generalized Swift-Hohenberg model. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[20] Konstantin Mischaikow,et al. A Rigorous Numerical Method for the Global Analysis of Infinite-Dimensional Discrete Dynamical Systems , 2004, SIAM J. Appl. Dyn. Syst..
[21] Gianni Arioli,et al. Symbolic Dynamics for the Hénon–Heiles Hamiltonian on the Critical Level , 2001 .
[22] M. Cross,et al. Pattern formation outside of equilibrium , 1993 .
[23] J. Kwapisz,et al. Homotopy Classes for Stable Connections between Hamiltonian Saddle-Focus Equilibria , 1998 .
[24] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[25] D. Chillingworth. DYNAMICAL SYSTEMS: STABILITY, SYMBOLIC DYNAMICS AND CHAOS , 1998 .
[26] L. A. Peletier,et al. Global Branches of Multi-Bump Periodic Solutions of the Swift-Hohenberg Equation , 2001 .
[27] L. Peletier,et al. Spatial Patterns: Higher Order Models in Physics and Mechanics , 2001 .
[28] Konstantin Mischaikow,et al. Rigorous Numerics for Global Dynamics: A Study of the Swift-Hohenberg Equation , 2005, SIAM J. Appl. Dyn. Syst..
[29] J. Yorke,et al. Period Three Implies Chaos , 1975 .
[30] C. Robinson. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .
[31] Mark A. Peletier,et al. Centrum Voor Wiskunde En Informatica Reportrapport Sequential Buckling: a Variational Analysis Sequential Buckling: a Variational Analysis , 2022 .
[32] R. Vandervorst,et al. Second order Lagrangian Twist systems: simple closed characteristics , 2001 .
[33] D. Wilczak. Chaos in the Kuramoto–Sivashinsky equations—a computer-assisted proof , 2003 .
[34] J. F. Toland,et al. Global Existence of Homoclinic and Periodic Orbits for a Class of Autonomous Hamiltonian Systems , 1995 .
[35] K. Mischaikow,et al. Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.
[36] Konstantin Mischaikow,et al. Global smooth solution curves using rigorous branch following , 2010, Math. Comput..
[37] R. Ghrist,et al. Morse theory on spaces of braids and Lagrangian dynamics , 2001, math/0105082.
[38] G. Hargreaves. Interval Analysis in Matlab , 2002 .
[39] W. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .
[40] June-Gi Kim. HOMOCLINIC ORBITS FOR HAMILTONIAN SYSTEMS , 1995 .