Optimal control of transverse vibration of a moving string with time-varying lengths

In this article, we are concerned with optimal control for the transverse vibration of a moving string with time-varying lengths. In the fixed final time horizon case, the Pontryagin maximum principle is established for the investigational system with a moving boundary, owing to the Dubovitskii and Milyutin functional analytical approach. A remark then follows for discussing the utilization of obtained necessary optimality condition.

[1]  Willard L. Miranker,et al.  The Wave Equation in a Medium in Motion , 1960, IBM J. Res. Dev..

[2]  Bing Sun,et al.  Dynamic Programming Viscosity Solution Approach and Its Applications to Optimal Control Problems , 2019, Studies in Systems, Decision and Control.

[3]  Donald E. Kirk,et al.  Optimal Control Theory , 1970 .

[4]  A. Galip Ulsoy,et al.  Transverse Vibration of an Axially Accelerating String , 1994 .

[5]  Fumitoshi Matsuno,et al.  Robust boundary control of an axially moving string by using a PR transfer function , 2005, IEEE Transactions on Automatic Control.

[6]  Bing Sun,et al.  Optimal boundary control of a continuum model for a highly re-entrant manufacturing system , 2018, Trans. Inst. Meas. Control.

[7]  Lilong Cai Active vibration control of axially moving continua , 1995, Other Conferences.

[8]  B. Guo,et al.  Free and Forced Vibration of an Axially Moving String With an Arbitrary Velocity Profile , 1998 .

[9]  J. A. Gibson,et al.  A predictive Min-H method to improve convergence to optimal solutions , 1974 .

[10]  C. D. Mote,et al.  On the energetics of axially moving continua , 1989 .

[11]  Bing Sun,et al.  A New Algorithm for Finding Numerical Solutions of Optimal Feedback Control Law , 2006, 2006 Chinese Control Conference.

[12]  Bao-Zhu Guo,et al.  Convergence of an Upwind Finite-Difference Scheme for Hamilton–Jacobi–Bellman Equation in Optimal Control , 2015, IEEE Transactions on Automatic Control.

[13]  Shuang Zhang,et al.  Active vibration control for a flexible string system with input backlash , 2016 .

[14]  Bao-Zhu Guo Asymptotic Behavior of the Energy of Vibration of a Moving String with Varying Lengths , 2000 .

[15]  Martin Gugat Optimal Energy Control in Finite Time by varying the Length of the String , 2007, SIAM J. Control. Optim..

[16]  Zhijia Zhao,et al.  Vibration control and boundary tension constraint of an axially moving string system , 2017 .

[17]  Hector O. Fattorini,et al.  Infinite Dimensional Optimization and Control Theory: References , 1999 .

[18]  B. Guo,et al.  Optimal birth control of population dynamics. , 1989, Journal of mathematical analysis and applications.

[19]  Martin Gugat,et al.  Optimal boundary feedback stabilization of a string with moving boundary , 2007, IMA J. Math. Control. Inf..

[20]  Jiongmin Yong,et al.  Optimal Control Theory for Infinite Dimensional Systems , 1994 .

[21]  B. T. Poljak,et al.  Lectures on mathematical theory of extremum problems , 1972 .

[22]  V. V. Popov Vibrations of a segment of a variable-length longitudinally-moving string☆ , 1986 .