Optical interconnects to silicon

This paper gives a brief historical summary of the development of the field of optical interconnects to silicon integrated circuits. It starts from roots in early optical switching phenomena, proceeds through novel semiconductor and quantum well optical and optoelectronic physics and devices, first proposals for optical interconnects, and optical computing and photonic switching demonstrators, to hybrid integrations of optoelectronic and silicon circuits that may solve basic scaling and other problems for interconnections in future information processing and switching machines.

[1]  K.C. Saraswat,et al.  Effect of scaling of interconnections on the time delay of VLSI circuits , 1982, IEEE Transactions on Electron Devices.

[2]  D. Kossives,et al.  GaAs MQW modulators integrated with silicon CMOS , 1995, IEEE Photonics Technology Letters.

[3]  C. Burrus,et al.  The quantum well self-electrooptic effect device: Optoelectronic bistability and oscillation, and self-linearized modulation , 1985 .

[4]  Anthony L. Lentine,et al.  Free-space digital optical systems , 1994 .

[5]  B S Wherrett,et al.  Optical cellular logic image processor: implementation and programming of a single channel digital optical circuit. , 1991, Applied optics.

[6]  D. Miller,et al.  Optical bistability in self‐electro‐optic effect devices with asymmetric quantum wells , 1989 .

[7]  T J Cloonan,et al.  Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays. , 1994, Applied optics.

[8]  E. Towe,et al.  Scanning the issue - Special issue on optical interconnections for digital systems , 2000, Proc. IEEE.

[9]  David A. B. Miller,et al.  Mode locking of semiconductor diode lasers using saturable excitonic nonlinearities , 1985 .

[10]  B K Jenkins,et al.  Sequential optical logic implementation. , 1984, Applied optics.

[11]  D. Miller,et al.  Large room‐temperature optical nonlinearity in GaAs/Ga1−x AlxAs multiple quantum well structures , 1982 .

[12]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[13]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[14]  D. H. Hartman,et al.  Optical clock distribution using a mode-locked semiconductor laser diode system , 1991 .

[15]  D. Miller,et al.  Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters. , 1989, Optics letters.

[16]  D. Miller,et al.  Dynamic non-linear optical processes in semiconductors , 1981 .

[17]  Jack L. Jewell,et al.  Digital optics , 1989, Proc. IEEE.

[18]  H. Thienpont,et al.  Demonstration of optoelectronic logic operations with differential pairs of optical thyristors , 1996, IEEE Photonics Technology Letters.

[19]  J. P. Harbison,et al.  Low threshold electrically pumped vertical cavity surface emitting microlasers , 1989, Annual Meeting Optical Society of America.

[20]  F.J. Leonberger,et al.  Optical interconnections for VLSI systems , 1984, Proceedings of the IEEE.

[21]  M.D. Feuer,et al.  Field-effect transistor self-electrooptic effect device: integrated photodiode, quantum well modulator and transistor , 1989, IEEE Photonics Technology Letters.

[22]  H. Gibbs Optical Bistability Controlling Light With Light , 1985 .

[23]  Robert W. Keyes,et al.  Optical Logic-in the Light of Computer Technology , 1985 .

[24]  David A. B. Miller,et al.  Limit to the Bit-Rate Capacity of Electrical Interconnects from the Aspect Ratio of the System Architecture , 1997, J. Parallel Distributed Comput..

[25]  D.Z. Tsang Optical interconnections for digital systems , 1992, IEEE Aerospace and Electronic Systems Magazine.

[26]  D. B. Buchholz,et al.  High-speed optoelectronic VLSI switching chip with >4000 optical I/O based on flip-chip bonding of MQW modulators and detectors to silicon CMOS , 1996 .

[27]  P. W. Smith,et al.  On the physical limits of digital optical switching and logic elements , 1982, The Bell System Technical Journal.

[28]  D. Miller,et al.  GaAs-AlGaAs multiquantum well reflection modulators grown on GaAs and silicon substrates , 1989, IEEE Photonics Technology Letters.

[29]  W. Wiegmann,et al.  Quantum States of Confined Carriers in Very Thin AlxGa1-x As-GaAs-AlxGa1-xAs Heterostructures , 1974 .

[30]  W. S. Hobson,et al.  Vertical-cavity surface-emitting lasers flip-chip bonded to gigabit-per-second CMOS circuits , 1999, IEEE Photonics Technology Letters.

[31]  M E Prise,et al.  Optical digital processor using arrays of symmetric self-electrooptic effect devices. , 1991, Applied optics.

[32]  H. S. Hinton,et al.  Symmetric self‐electro‐optic effect device: Optical set‐reset latch , 1988 .

[33]  S H Lee,et al.  Comparison between optical and electrical interconnects based on power and speed considerations. , 1988, Applied optics.

[34]  C. Burrus,et al.  Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect , 1984 .

[35]  K. Uomi,et al.  High-extinction-ratio MQW electroabsorption-modulator integrated DFB laser fabricated by in-plane bandgap energy control technique , 1992, IEEE Photonics Technology Letters.

[36]  R. Keyes Power dissipation in information processing. , 1970, Science.

[37]  K. Iga,et al.  GaInAsP/InP Surface Emitting Injection Lasers , 1979 .

[38]  K. Kasahara VSTEP-based smart pixels , 1993 .

[39]  D. Miller,et al.  Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber. , 1992, Optics letters.

[40]  David A. B. Miller Dense two-dimensional integration of optoelectronics and electronics for interconnections , 1998, Photonics West.

[41]  I. A. Shcherbakov,et al.  Non-linear population processes of Er3+ laser levels in chromium-doped garnet crystals , 1990 .

[42]  Philippe M. Fauchet,et al.  Progress toward nanoscale silicon light emitters , 1998 .

[43]  Ashok V. Krishnamoorthy,et al.  Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap , 1996 .

[44]  S. Daryanani,et al.  Integrated inversion channel optoelectronic devices and circuit elements for multifunctional array applications , 1993 .

[45]  A. Huang,et al.  Architectural considerations involved in the design of an optical digital computer , 1984, Proceedings of the IEEE.

[46]  D.A.B. Miller,et al.  Rationale and challenges for optical interconnects to electronic chips , 2000, Proceedings of the IEEE.

[47]  Ingrid Moerman,et al.  Realisation of highly efficient 850 nm top emitting resonant cavity light emitting diodes , 1999 .

[48]  D. Deppe,et al.  Native-Oxide Defined Ring Contact for Low Threshold Vertical-Cavity Lasers , 1994 .

[49]  V. Dneprovskii,et al.  Optical bistability in semiconductors , 1985 .

[50]  David A. B. Miller,et al.  Optical bistability and signal amplification in a semiconductor crystal: applications of new low‐power nonlinear effects in InSb , 1979 .

[51]  T J Cloonan,et al.  Six-stage digital free-space optical switching network using symmetric self-electro-optic-effect devices. , 1993, Applied optics.