Synthesis of 5-epi-taiwaniaquinone G.

A concise synthetic approach to the unnatural 5-epi-taiwaniaquinone G has been developed via a Lewis acid catalyzed tandem acylation-Nazarov cyclization reaction to construct the tricyclic skeleton, followed by installation of the isopropyl group through a strategy involving coumarin formation and its subsequent hydrolysis.

[1]  Junbiao Chang,et al.  Lewis acid-catalyzed tandem acylation–Nazarov cyclization for the syntheses of fused cyclopentenones , 2014 .

[2]  K. Arimitsu,et al.  First asymmetric total synthesis of (+)-taiwaniaquinol D and (−)-taiwaniaquinone D by using intramolecular Heck reaction , 2013 .

[3]  J. Li,et al.  Divergent total synthesis of taiwaniaquinones A and F and taiwaniaquinols B and D. , 2013, Organic letters.

[4]  K. Gademann,et al.  Syntheses of taiwaniaquinone F and taiwaniaquinol A via an unusual remote C-H functionalization. , 2013, Organic letters.

[5]  J. Zhao,et al.  Ethylene glycol as hydrogen donor for the syntheses of thymol analogues via hydrolysis of 4-methylcoumarins , 2012 .

[6]  Meiling Hong,et al.  Convergent formal synthesis of (±)-roseophilin. , 2012, The Journal of organic chemistry.

[7]  R. Chahboun,et al.  General access to taiwaniaquinoids based on a hypothetical abietane C7-C8 cleavage biogenetic pathway. , 2012, The Journal of organic chemistry.

[8]  J. Hartwig,et al.  Enantioselective total syntheses of (-)-taiwaniaquinone H and (-)-taiwaniaquinol B by iridium-catalyzed borylation and palladium-catalyzed asymmetric α-arylation. , 2011, Journal of the American Chemical Society.

[9]  R. Chahboun,et al.  Enantioselective total synthesis of cytotoxic taiwaniaquinones A and F. , 2010, Chemical communications.

[10]  George Majetich,et al.  The taiwaniaquinoids: a review. , 2010, Journal of natural products.

[11]  E. Cabrera,et al.  An enantiospecific route towards taiwaniaquinoids. First synthesis of (-)-taiwaniaquinone H and (-)-dichroanone. , 2009, Organic & biomolecular chemistry.

[12]  G. Panda,et al.  Application of Nazarov cyclization to access [6-5-6] and [6-5-5]tricyclic core embedded new heterocycles: an easy entry to structures related to taiwaniaquinoids. , 2009, Organic & biomolecular chemistry.

[13]  E. Cabrera,et al.  A very efficient route toward the 4a-methyltetrahydrofluorene skeleton: short synthesis of (+/-)-dichroanone and (+/-)-taiwaniaquinone H. , 2009, The Journal of organic chemistry.

[14]  E. Cabrera,et al.  A thermal 6pi electrocyclization strategy towards taiwaniaquinoids. First enantiospecific synthesis of (-)-taiwaniaquinone G. , 2009, Chemical communications.

[15]  Jiyue Zheng,et al.  Application of a domino Friedel-Crafts acylation/alkylation reaction to the formal syntheses of (+/-)-taiwaniaquinol B and (+/-)-dichroanone. , 2008, Organic letters.

[16]  P. Chiu,et al.  Acid-promoted sequential cationic cyclizations for the synthesis of (±)-taiwaniaquinol B , 2008 .

[17]  D. Shinde,et al.  Oxalic acid catalyzed solvent-free one pot synthesis of coumarins , 2007 .

[18]  Koichi Saito,et al.  Synthesis of DL-standishinal and its related compounds for the studies on structure-activity relationship of inhibitory activity against aromatase. , 2007, Bioorganic & medicinal chemistry.

[19]  D. Trauner,et al.  Synthesis of taiwaniaquinoids via Nazarov triflation. , 2006, Journal of the American Chemical Society.

[20]  B. Stoltz,et al.  The catalytic enantioselective, protecting group-free total synthesis of (+)-dichroanone. , 2006, Journal of the American Chemical Society.

[21]  R. Mukhopadhyay,et al.  General route to 4a-methylhydrofluorene diterpenoids: total syntheses of (+/-)-taiwaniaquinones d and h, (+/-)-taiwaniaquinol B, (+/-)-dichroanal B, and (+/-)-dichroanone. , 2006, The Journal of organic chemistry.

[22]  M. Mogi,et al.  Efficient route to 4a-methyltetrahydrofluorenes: a total synthesis of (+/-)-dichroanal B via intramolecular Heck reaction. , 2006, The Journal of organic chemistry.

[23]  E. Fillion,et al.  Total synthesis of (+/-)-taiwaniaquinol B via a domino intramolecular friedel-crafts acylation/carbonyl alpha-tert-alkylation reaction. , 2005, Journal of the American Chemical Society.

[24]  Y. Kuo,et al.  Four new 6-nor5(6-->7)abeo-abietane type diterpenes and antitumoral cytotoxic diterpene constituents from the bark of Taiwania cryptomerioides. , 2005, Planta medica.

[25]  Y. Kuo,et al.  Three novel 5(6-->7)abeoabietane-type diterpenes from the bark of Taiwania cryptomerioides. , 2003, Chemical & pharmaceutical bulletin.

[26]  R. Mukhopadhyay,et al.  First total synthesis of the 4a-methyltetrahydrofluorene diterpenoids (+/-)-dichroanal B and (+/-)-dichroanone. , 2003, Organic letters.

[27]  Jia'er Chen,et al.  The National Natural Science Fundation of China , 2003 .

[28]  Amit C. Khandekar,et al.  Pechmann reaction in chloroaluminate ionic liquid , 2002 .

[29]  A. Yoshitake,et al.  Aromatase inhibitory activities of standishinal and the diterpenoids from the bark of Thuja standishii. , 2002, Planta medica.

[30]  H. Nishino,et al.  Anti-tumor promoting diterpenes from the stem bark of Thuja standishii (Cupressaceae). , 2001, Bioorganic & medicinal chemistry.

[31]  R. Tanaka,et al.  Standishinal, a Novel Carbon Skeletal Diterpene from the Bark of Thuja standishii (Gord.) Carr. , 1999 .

[32]  K. Kawazoe,et al.  Rearranged abietane-type diterpenes from Salvia dichroantha , 1999 .

[33]  B. A. Miguel,et al.  Le γ-Pyronène : Synthon d'Accès au Safranal et Précurseur d'Intermédiaires de Synthèse de la Forskoline et du Strigol , 1998 .

[34]  Jim-Min Fang,et al.  Diterpenes and related cycloadducts from Taiwania cryptomerioides , 1996 .

[35]  Jim-Min Fang,et al.  Uncommon diterpenes with the skeleton of six-five-six fused-rings from Taiwania cryptomerioides , 1995 .

[36]  T. Engler,et al.  A new general synthetic approach to diterpenes: application to syntheses of (.+-.)-taxodione and (.+-.)-royleanone , 1989 .

[37]  E. Dalcanale,et al.  Selective oxidation of aldehydes to carboxylic acids with sodium chlorite-hydrogen peroxide , 1986 .

[38]  D. D. Perrin,et al.  Purification of Laboratory Chemicals , 2022 .