Barrier heights in the Kauffman model

We consider two versions of the Kauffman model (the quenched and the annealed models) in presence of thermal noise. When we compare the time evolution of two configurations subjected to the same thermal noise, we find for both versions of the Kauffman model that below a critical temperature T c , the time τ 2 for these two configurations to become identical increases exponentially with the system size N. This defines a barrier height which can be calculated analytically for the annealed model only. When we compare more than two configurations, we observe that the time τ n it takes for at least two configurations among n to meet increases also exponentially. The slope of log τ n versus the system size N seems to be the same for all n and for both models Nous considerons deux versions du modele de Kauffman (le modele gele et le modele recuit) en presence de bruit. Quand on compare deux configurations soumises au meme bruit thermique, on observe que, pour ces deux versions du modele de Kauffman, au-dessous d'une temperature critique T c , le temps τ 2 qu'il faut pour que les deux configurations se rejoignent augmente exponentiellement avec la taille N du systeme. Cela definit une hauteur de barriere qui peut etre calculee analytiquement pour le modele recuit. Quand on compare plus que deux configurations, on observe que les temps τ n pour qu'au moins deux configurations parmi n se rencontrent augmentent aussi exponentiellement. La pente de log τ n en fonction de N semble etre la meme pour tout n et pour les deux modeles

[1]  Gérard Weisbuch,et al.  Domains and Distances in Magnetic Systems , 1988, Complex Syst..

[2]  Henrik Flyvbjerg,et al.  An order parameter for networks of automata , 1988 .

[3]  H. Hilhorst,et al.  On the approach of the stationary state in Kauffman's random Boolean network , 1987 .

[4]  Pui-Man Lam A percolation approach to the Kauffman model , 1988 .

[5]  H. Gutfreund,et al.  The nature of attractors in an asymmetric spin glass with deterministic dynamics , 1988 .

[6]  B. Derrida,et al.  Finite size scaling study of dynamical phase transitions in two dimensional models : Ferromagnet, symmetric and non symmetric spin glasses , 1988 .

[7]  On the use of spin glass concepts in random automata networks , 1988 .

[8]  Bernard Derrida,et al.  Multivalley structure in Kauffman's model: analogy with spin glasses , 1986 .

[9]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[10]  Bernard Derrida,et al.  Statistical properties of valleys in the annealed random map model , 1988 .

[11]  B. Derrida,et al.  Dynamical phase transitions in the two-dimensional ANNNI model , 1988 .

[12]  B. Derrida,et al.  Effect of thermal noise and initial conditions in the dynamics of a mean-field ferromagnet , 1988 .

[13]  A P Young,et al.  Statics and dynamics of the infinite-range Ising spin glass model , 1983 .

[14]  B. Derrida,et al.  Random networks of automata: a simple annealed approximation , 1986 .

[15]  D. Stauffer,et al.  Random Boolean networks: Analogy with percolation , 1987 .

[16]  B. Derrida,et al.  Evolution of overlaps between configurations in random Boolean networks , 1986 .

[17]  Gérard Weisbuch,et al.  Dynamical Phase Transitions in 3-Dimensional Spin Glasses , 1987 .

[18]  S. Kauffman Emergent properties in random complex automata , 1984 .

[19]  Antonio Coniglio,et al.  Exact Relations Between Damage Spreading and Thermodynamical Properties , 1989 .

[20]  B. Derrida Dynamical phase transition in nonsymmetric spin glasses , 1987 .