Bootstrap for Empirical Multifractal Analysis

Multifractal analysis is becoming a standard statistical analysis technique. In signal processing, it mostly consists of estimating scaling exponents characterizing scale invariance properties. For practical purposes, confidence intervals in estimation and p values in hypothesis testing are of primary importance. In empirical multifractal analysis, the statistical performance of estimation or test procedures remain beyond analytical derivation because of the theoretically involved nature of multifractal processes. Therefore, the goal of this article is to show how non-parametric bootstrap approaches circumvent such limitations and yield procedures that exhibit satisfactory statistical performance and can hence be practically used on real-life data. Such tools are illustrated at work on the analysis of the multifractal properties of empirical hydrodynamic turbulence data.

[1]  S. Mallat A wavelet tour of signal processing , 1998 .

[2]  Susan R. Wilson,et al.  Two guidelines for bootstrap hypothesis testing , 1991 .

[3]  Patrice Abry,et al.  A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.

[4]  J. Delour,et al.  Intermittency of 1D velocity spatial profiles in turbulence: a magnitude cumulant analysis , 2001 .

[5]  E. Bacry,et al.  Multifractal stationary random measures and multifractal random walks with log infinitely divisible scaling laws. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Yves Gagne,et al.  Log-similarity for turbulent flows? , 1993 .

[7]  Jensen,et al.  Direct determination of the f( alpha ) singularity spectrum and its application to fully developed turbulence. , 1989, Physical review. A, General physics.

[8]  E. Mammen The Bootstrap and Edgeworth Expansion , 1997 .

[9]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[10]  Ciliberto,et al.  Hierarchy of the energy dissipation moments in fully developed turbulence. , 1995, Physical review letters.

[11]  J. Coeurjolly,et al.  Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths , 2001 .

[12]  U. Frisch FULLY DEVELOPED TURBULENCE AND INTERMITTENCY , 1980 .

[13]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[14]  S. Jaffard,et al.  Wavelet Leaders in Multifractal Analysis , 2006 .

[15]  Stephen E. Fienberg,et al.  Testing Statistical Hypotheses , 2005 .

[16]  Gutti Jogesh Babu Bootstrap Techniques for Signal Processing , 2005, Technometrics.

[17]  S. Jaffard Wavelet Techniques in Multifractal Analysis , 2004 .

[18]  Alain Arneodo,et al.  Towards log-normal statistics in high Reynolds number turbulence , 1998 .

[19]  Patrice Abry,et al.  Multifractality Tests Using Bootstrapped Wavelet Leaders , 2007, IEEE Transactions on Signal Processing.

[20]  PROCEssIng magazInE IEEE Signal Processing Magazine , 2004 .

[21]  Alan David Hutson,et al.  Resampling Methods for Dependent Data , 2004, Technometrics.

[22]  M. Lapidus,et al.  Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot , 2004 .

[23]  B. Mandelbrot Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier , 2004 .

[24]  E. Bacry,et al.  Singularity spectrum of fractal signals from wavelet analysis: Exact results , 1993 .

[25]  Patrice Abry,et al.  Wavelets for the Analysis, Estimation, and Synthesis of Scaling Data , 2002 .

[26]  Patrice Abry,et al.  On non-scale-invariant infinitely divisible cascades , 2005, IEEE Transactions on Information Theory.

[27]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[28]  Gabriel Lang,et al.  Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .