Recent results in the theory and applications of CARMA processes

Just as ARMA processes play a central role in the representation of stationary time series with discrete time parameter, $$(Y_n)_{n\in \mathbb {Z}}$$(Yn)n∈Z, CARMA processes play an analogous role in the representation of stationary time series with continuous time parameter, $$(Y(t))_{t\in \mathbb {R}}$$(Y(t))t∈R. Lévy-driven CARMA processes permit the modelling of heavy-tailed and asymmetric time series and incorporate both distributional and sample-path information. In this article we provide a review of the basic theory and applications, emphasizing developments which have occurred since the earlier review in Brockwell (2001a, In D. N. Shanbhag and C. R. Rao (Eds.), Handbook of Statistics 19; Stochastic Processes: Theory and Methods (pp. 249–276), Amsterdam: Elsevier).

[1]  R. Stelzer Multivariate COGARCH(1,1) processes , 2010, 1002.4261.

[2]  Richard A. Davis,et al.  Continuous-time Gaussian autoregression , 2007 .

[3]  R. Maller,et al.  GARCH modelling in continuous time for irregularly spaced time series data , 2008, 0805.2096.

[4]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[5]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[6]  C. Klüppelberg,et al.  Stationarity and second order behaviour of discrete and continuous time GARCH(1,1) processes , 2003 .

[7]  J. Doob Stochastic processes , 1953 .

[8]  A. Bergstrom Continuous Time Econometric Modelling. , 1992 .

[9]  A. V. D. Vaart,et al.  Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes , 2005 .

[10]  P. Brockwell,et al.  Integration of CARMA processes and spot volatility modelling , 2013 .

[11]  A. W. Phillips,et al.  THE ESTIMATION OF PARAMETERS IN SYSTEMS OF STOCHASTIC DIFFERENTIAL EQUATIONS , 1959 .

[12]  Tucker McElroy Forecasting continuous-time processes with applications to signal extraction , 2013 .

[13]  Richard A. Davis,et al.  Time Series: Theory and Methods (2nd ed.). , 1992 .

[14]  Ken-iti Sato,et al.  Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type , 1984 .

[15]  F. Comte,et al.  Long memory in continuous‐time stochastic volatility models , 1998 .

[16]  J. Doob The Elementary Gaussian Processes , 1944 .

[17]  C. Klüppelberg,et al.  High‐frequency sampling and kernel estimation for continuous‐time moving average processes , 2011, 1107.4468.

[18]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[19]  Prediction of Lévy-driven CARMA processes , 2015 .

[20]  A note on non‐negative continuous time processes , 2005 .

[21]  Piotr Kokoszka,et al.  Fractional ARIMA with stable innovations , 1995 .

[22]  R. Stelzer,et al.  Multivariate CARMA processes , 2007 .

[23]  Rob J. Hyndman,et al.  Yule‐Walker Estimates For Continuous‐Time Autoregressive Models , 1993 .

[24]  C. Klüppelberg,et al.  Method of Moment Estimation in the Cogarch(1,1) Model , 2007 .

[25]  F. Benth,et al.  The CARMA Interest Rate Model , 2012 .

[26]  Robert Stelzer,et al.  Lévy-driven CARMA Processes , 2015 .

[27]  Victor Pérez-Abreu Ornstein–Uhlenbeck Processes , 2010 .

[28]  Richard H. Jones 5 Time series analysis with unequally spaced data , 1985 .

[29]  F. Comte,et al.  Long memory continuous time models , 1996 .

[30]  A. Kyprianou Introductory Lectures on Fluctuations of Lévy Processes with Applications , 2006 .

[31]  C. Klüppelberg,et al.  Estimation of stable CARMA models with an application to electricity spot prices , 2011 .

[32]  Peter J. Brockwell,et al.  Strictly stationary solutions of autoregressive moving average equations , 2010 .

[33]  Lan Zhang,et al.  The Econometrics of High Frequency Data , 2004 .

[34]  Pham-Dinh-Tuan Estimation of parameters of a continuous time Gaussian stationary process with rational spectral density , 1977 .

[35]  T. Marquardt Fractional Lévy processes with an application to long memory moving average processes , 2006 .

[36]  George Tauchen,et al.  Simulation Methods for Levy-Driven Carma Stochastic Volatility Models , 2004 .

[37]  Richard H. Jones FITTING A CONTINUOUS TIME AUTOREGRESSION TO DISCRETE DATA , 1981 .

[38]  T. Marquardt Multivariate fractionally integrated CARMA processes , 2007 .

[39]  Gernot Müller,et al.  MCMC Estimation of the COGARCH(1,1) Model , 2010 .

[40]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[41]  Peter J. Brockwell,et al.  Parametric estimation of the driving Lévy process of multivariate CARMA processes from discrete observations , 2012, J. Multivar. Anal..

[42]  B. Werker Discussion of "Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics" by Barndorff-Nielsen and Shephard , 2001 .

[43]  Luca Benzoni,et al.  Realized Volatility , 2008 .

[44]  Marcus J. Chambers,et al.  Continuous‐time autoregressive moving average processes in discrete time: representation and embeddability , 2013 .

[45]  A. Bergstrom The Estimation of Parameters in Nonstationary Higher Order Continuous-Time Dynamic Models , 1985, Econometric Theory.

[46]  Peter J. Brockwell,et al.  Representations of continuous-time ARMA processes , 2004, Journal of Applied Probability.

[47]  Jan Hannig,et al.  CARMA(p,q) generalized random processes , 2010 .

[48]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[49]  Peter J. Brockwell,et al.  Bootstrapping continuous-time autoregressive processes , 2014 .

[50]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[51]  P. Brockwell,et al.  Estimation for Nonnegative Lévy-Driven Ornstein-Uhlenbeck Processes , 2007, Journal of Applied Probability.

[52]  F. Fuchs,et al.  Spectral estimates for high‐frequency sampled continuous‐time autoregressive moving average processes , 2013 .

[53]  P. Brockwell Continuous-time ARMA processes , 2001 .

[54]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .

[55]  C. Klüppelberg,et al.  A continuous-time GARCH process driven by a Lévy process: stationarity and second-order behaviour , 2004, Journal of Applied Probability.

[56]  Chris Chatfield,et al.  The Analysis of Time Series: An Introduction , 1981 .

[57]  F. Fuchs,et al.  Noise recovery for Lévy-driven CARMA processes and high-frequency behaviour of approximating Riemann sums , 2012, 1210.1389.

[58]  M. Arató Linear Stochastic Systems with Constant Coefficients , 1982 .

[59]  F. Benth,et al.  Futures pricing in electricity markets based on stable CARMA spot models , 2012, 1201.1151.

[60]  Neil Shephard,et al.  Integrated OU Processes and Non‐Gaussian OU‐based Stochastic Volatility Models , 2003 .

[61]  George Tauchen,et al.  Simulation Methods for Lévy-Driven Continuous-Time Autoregressive Moving Average (CARMA) Stochastic Volatility Models , 2006 .

[62]  K. Karhunen Über die Struktur stationärer zufälliger Funktionen , 1950 .

[63]  P. Brockwell,et al.  Estimation for Non-Negative Lévy-Driven CARMA Processes , 2011 .

[64]  Strictly stationary solutions of ARMA equations with fractional noise , 2012 .

[65]  Peter J. Brockwell,et al.  Existence and uniqueness of stationary Lvy-driven CARMA processes , 2009 .

[66]  Jeannette H. C. Woerner,et al.  Well-balanced Lévy driven Ornstein–Uhlenbeck processes , 2010, 1012.0691.

[67]  Peter J. Brockwell,et al.  Lévy–Driven Continuous–Time ARMA Processes , 2009 .

[68]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[69]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[70]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[71]  P. Brockwell,et al.  A Class of Non‐Embeddable ARMA Processes , 1999 .

[72]  Continuous-time GARCH processes , 2006, math/0607109.

[73]  M. Bartlett On the Theoretical Specification and Sampling Properties of Autocorrelated Time‐Series , 1946 .

[74]  James Durbin,et al.  Efficient fitting of linear models for continuous stationary time-series from discrete data , 1960 .

[75]  Peter J. Brockwell,et al.  Lévy-driven and fractionally integrated ARMA processes with continuous time parameter , 2005 .

[76]  S. Wolfe On a continuous analogue of the stochastic difference equation Xn=ρXn-1+Bn , 1982 .