Efficient Quantum Circuits for Accurate State Preparation of Smooth, Differentiable Functions

Effective quantum computation relies upon making good use of the exponential information capacity of a quantum machine. A large barrier to designing quantum algorithms for execution on real quantum machines is that, in general, it is intractably difficult to construct an arbitrary quantum state to high precision. Many quantum algorithms rely instead upon initializing the machine in a simple state, and evolving the state through an efficient (i.e. at most polynomial-depth) quantum algorithm. In this work, we show that there exist families of quantum states that can be prepared to high precision with circuits of linear size and depth. We focus on real-valued, smooth, differentiable functions with bounded derivatives on a domain of interest, exemplified by commonly used probability distributions. We further develop an algorithm that requires only linear classical computation time to generate accurate linear- depth circuits to prepare these states, and apply this to well-known and heavily-utilized functions including Gaussian and lognormal distributions. Our procedure rests upon the quantum state representation tool known as the matrix product state (MPS). By efficiently and scalably encoding an explicit amplitude function into an MPS, a high fidelity, linear-depth circuit can directly be generated. These results enable the execution of many quantum algorithms that, aside from initialization, are otherwise depth-efficient.

[1]  Boris N. Khoromskij,et al.  Computation of extreme eigenvalues in higher dimensions using block tensor train format , 2013, Comput. Phys. Commun..

[2]  Dieter Jaksch,et al.  Multigrid renormalization , 2018, J. Comput. Phys..

[3]  Stefan Woerner,et al.  Quantum risk analysis , 2018, npj Quantum Information.

[4]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[5]  A. Montanaro Quantum speedup of Monte Carlo methods , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  Colin Fox,et al.  Approximation and sampling of multivariate probability distributions in the tensor train decomposition , 2018, Statistics and Computing.

[7]  Michele Mosca,et al.  Quantum Networks for Generating Arbitrary Quantum States , 2001, OFC 2001.

[8]  Anmer Daskin Quantum Principal Component Analysis , 2015 .

[9]  Yue Sun,et al.  Option Pricing using Quantum Computers , 2019, Quantum.

[10]  Shi-Ju Ran,et al.  Encoding of matrix product states into quantum circuits of one- and two-qubit gates , 2019, Physical Review A.

[11]  Scott Pakin,et al.  Quantum Algorithm Implementations for Beginners , 2018, ACM Transactions on Quantum Computing.

[12]  J. Biamonte,et al.  Tensor Networks in a Nutshell , 2017, 1708.00006.

[13]  E. Tyrtyshnikov,et al.  TT-cross approximation for multidimensional arrays , 2010 .

[14]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[15]  I. Oseledets Constructive Representation of Functions in Low-Rank Tensor Formats , 2012, Constructive Approximation.

[16]  J. A. Parker,et al.  Comparison of Interpolating Methods for Image Resampling , 1983, IEEE Transactions on Medical Imaging.

[17]  Ngai Wong,et al.  Computing low-rank approximations of large-scale matrices with the Tensor Network randomized SVD , 2018, SIAM J. Matrix Anal. Appl..

[18]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[19]  Seth Lloyd,et al.  Quantum computational finance: quantum algorithm for portfolio optimization , 2018, 1811.03975.

[20]  J. Joo,et al.  Variational quantum algorithms for nonlinear problems , 2019, Physical Review A.

[21]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[22]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[23]  Thomas R. Bromley,et al.  Quantum computational finance: Monte Carlo pricing of financial derivatives , 2018, Physical Review A.

[24]  William A. Webb,et al.  Wavefunction preparation and resampling using a quantum computer , 2008, 0801.0342.

[25]  Roman Orus,et al.  Quantum computing for finance: Overview and prospects , 2018, Reviews in Physics.

[26]  Stefan Woerner,et al.  Quantum Generative Adversarial Networks for learning and loading random distributions , 2019, npj Quantum Information.

[27]  Robert H. Martin Elementary Differential Equations With Boundary Value Problems , 1984 .

[28]  Reinhold Schneider,et al.  A Randomized Tensor Train Singular Value Decomposition , 2017, 1710.08513.

[29]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[30]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[31]  Lov K. Grover,et al.  Creating superpositions that correspond to efficiently integrable probability distributions , 2002, quant-ph/0208112.

[32]  Andrew M. Childs,et al.  Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision , 2015, SIAM J. Comput..

[33]  Enrique Solano,et al.  Towards Pricing Financial Derivatives with an IBM Quantum Computer. , 2019, 1904.05803.

[34]  vCaslav Brukner,et al.  Quantum-state preparation with universal gate decompositions , 2010, 1003.5760.

[35]  R. Keys Cubic convolution interpolation for digital image processing , 1981 .

[36]  Andrzej Cichocki,et al.  Very Large-Scale Singular Value Decomposition Using Tensor Train Networks , 2014, ArXiv.

[37]  Reinhold Schneider,et al.  The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..

[38]  Seth Lloyd,et al.  Quantum algorithm for data fitting. , 2012, Physical review letters.

[39]  Diego Garc'ia-Mart'in,et al.  Quantum unary approach to option pricing , 2019, Physical Review A.

[40]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[41]  Matthias Troyer,et al.  Entanglement spectroscopy on a quantum computer , 2017, 1707.07658.

[42]  Sung Yong Shin,et al.  Scattered Data Interpolation with Multilevel B-Splines , 1997, IEEE Trans. Vis. Comput. Graph..

[43]  Hsieh Hou,et al.  Cubic splines for image interpolation and digital filtering , 1978 .

[44]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[45]  Yimin Wei,et al.  Randomized algorithms for the approximations of Tucker and the tensor train decompositions , 2018, Advances in Computational Mathematics.

[46]  Juan Jos'e Garc'ia-Ripoll,et al.  Quantum-inspired algorithms for multivariate analysis: from interpolation to partial differential equations , 2019, Quantum.

[47]  Frank Pollmann,et al.  Time-evolving a matrix product state with long-ranged interactions , 2014, 1407.1832.