A Complete Coinductive Logical System for Bisimulation Equivalence on Circular Objects

We introduce a coinductive logical system a la Gentzen for establishing bisimulation equivalences on circular non-wellfounded regular objects, inspired by work of Coquand, and of Brandt and Henglein. In order to describe circular objects, we utilize a typed language, whose coinductive types involve disjoint sum, cartesian product, and finite powerset constructors. Our system is shown to be complete with respect to a maximal fixed point semantics. It is shown to be complete also with respect to an equivalent final semantics. In this latter semantics, terms are viewed as points of a coalgebra for a suitable endofunctor on the category Set* of non-wellfounded sets. Our system subsumes an axiomatization of regular processes, alternative to the classical one given by Milner.

[1]  F. Honsell,et al.  Set theory with free construction principles , 1983 .

[2]  Jan J. M. M. Rutten,et al.  On the Foundation of Final Semantics: Non-Standard Sets, Metric Spaces, Partial Orders , 1992, REX Workshop.

[3]  Carolyn L. Talcott A Theory for Program and Data Type Specification , 1992, Theor. Comput. Sci..

[4]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[5]  Marina Lenisa Themes in Final Semantics , 1998 .

[6]  Furio Honsell,et al.  Final Semantics for untyped lambda-calculus , 1995, TLCA.

[7]  Marina Lenisa Final Semantics for a Higher Order Concurrent Language , 1996, CAAP.

[8]  Erik P. de Vink,et al.  Control flow semantics , 1996 .

[9]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[10]  Marcelo P. Fiore A Coinduction Principle for Recursive Data Types Based on Bisimulation , 1996, Inf. Comput..

[11]  Lawrence S. Moss,et al.  Vicious circles - on the mathematics of non-wellfounded phenomena , 1996, CSLI lecture notes series.

[12]  D. Turi,et al.  Functional Operational Semantics and its Denotational Dual , 1996 .

[13]  Alexander Simpson Workshop on Types for Proofs and Programs , 1993 .

[14]  Eduardo Giménez,et al.  Codifying Guarded Definitions with Recursive Schemes , 1994, TYPES.

[15]  A. R. D. Mathias,et al.  NON‐WELL‐FOUNDED SETS (CSLI Lecture Notes 14) , 1991 .

[16]  Andrew M. Pitts,et al.  Relational Properties of Domains , 1996, Inf. Comput..

[17]  Fritz Henglein,et al.  Coinductive Axiomatization of Recursive Type Equality and Subtyping , 1998, Fundam. Informaticae.

[18]  Thierry Coquand,et al.  Infinite Objects in Type Theory , 1994, TYPES.

[19]  Eduardo Giménez,et al.  An Application of Co-inductive Types in Coq: Verification of the Alternating Bit Protocol , 1995, TYPES.

[20]  Peter Aczel,et al.  Non-well-founded sets , 1988, CSLI lecture notes series.

[21]  Robin Milner,et al.  A Complete Inference System for a Class of Regular Behaviours , 1984, J. Comput. Syst. Sci..

[22]  Eduardo Giménez,et al.  Un calcul de constructions infinies et son application a la verification de systemes communicants , 1996 .

[23]  Robin Milner,et al.  Calculi for Synchrony and Asynchrony , 1983, Theor. Comput. Sci..